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Abstract

I examine the effects of three different policies on crime related outcomes. First,

I consider whether access to mental health care effects crime rates. In particular,

I consider whether the effect on arrest rates of increasing access to mental health

care for those that already have private insurance by exploiting the state and time

variation in the adoption of mental health parity mandates. I find no evidence to

suggest that even the most far-reaching of these mandates are effective at curbing

crime. I also follow up on prior studies, applying this approach to determine the effect

on suicide rates. I similarly find no change in suicide rates as a result of expansions in

mental health care access.

Second, I examine whether same-sex marriage legalization announcements impact

the occurrence of LGBT hate-crimes. I exploit variation in the timing of same-sex

marriage legalization announcements across states, using a difference-in-differences

design. I find that a same-sex marriage legalization announcement leads to a reduction

in the LGBT hate-crime rate of 0.111 per 100,000 people from a base of 0.3. This

result is mostly driven by reductions in violent hate-crimes. There is also evidence

of a reduction in property hate-crimes. Additional analyses indicate that the effect

is stronger in counties with a large share of likely perpetrators. The results show

suggestive evidence that same-sex marriage bans have the opposite effect on the

LGBT hate-crime rate. The results demonstrate that salient LGBT-specific policy

announcements are effective at reducing hate-crimes based on sexual orientation.

Third, I study the impact that recreational marijuana legalization has on airline

travel. Using origin to destination flight data and marijuana legalization and availabil-
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ity dates, I find no evidence of an increase in airline travel as a result of marijuana

legalization. The null results are robust to difference-in-differences models and syn-

thetic control models. My initial estimates may be attenuated by business travelers,

drivers, or enforcement of marijuana prohibition. I control for these circumstances

and still find no effect.
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Chapter 1

Does Access To Mental Health Care Deter

Crime?1

1.1 Introduction

Mentally ill individuals commit crimes at a higher rate than the population as a

whole (Swanson 1990; Van Dorn, Volavka, and Johnson 2012). In particular, both the

severely mentally ill (SMI) and those with minor mental health problems are more

likely to commit sexual offenses and assaults compared to the general population

(Silver, Felson, and Vaneseltine 2008). Additionally, SMI individuals are more likely

to commit property crime than the general population. Accordingly, the number

of those at risk to commit crimes due to mental illness is high, meaning there are

potentially large stakes to finding a solution to this problem. Approximately one

in five adults in the United States are burdened by mental health problems every

year, according to the National Institute of Mental Health 2017. About one in four

of those (or about ten million people) have mental illnesses that are considered to

be serious enough to impair regular tasks. Of those, a quarter are diagnosed with

schizophrenia; two-thirds are diagnosed with bipolar disorder. Mental health coverage

has significant gaps, especially for youth, those living away from urban centers, and

for middle-income families (Cohen and Hesselbart 1993). Eighty percent of youth

that need mental health services don’t get care (Kataoka, Zhang, and Wells 2002).

If treatment of these individuals is effective in preventing criminal behavior, then

1Robert Pettis. To be submitted to Law and Economics.
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increasing access to this treatment may be an effective mechanism to reduce crime.

In this paper, I ask whether increased mental health coverage deters crime. To

answer this, I exploit the variation in legislation intended to increase access to mental

health coverage across states and over time through a difference-in-differences (DiD)

model. To this end, I utilize mental health parity mandates. These mandates require

a level of parity between physical and mental health coverage.

I find little evidence to support the notion that increasing access of mental health

care through parity legislation is an effective deterrent on crime.

These results further contribute to the growing literature of mental health and

its association with crime. Edwards 2014a concludes that increasing the minimum

stay required for involuntary commitment to mental health facilities can reduce crime.

Edwards 2015 wrote that if voluntarily committed patients are allowed to refuse

medication, this may increase the number of voluntarily committed, but optional

consumption of medication (and the associated side effects) could reduce treatment

and therefore increase violence. Yoon 2007 concluded that decreases in the number

of publicly funded available psychiatric hospital beds (a measure of the supply of

mental health facilities) leads to a large increase in both violent crime and property

crime. Additionally, there were results suggesting that these decreases in available

beds could increase the probability of jail detention. Edwards 2014b studies the

effect of duty-to-warn laws, which describe the inherent responsibility of a health care

professional to inform third parties if they have reason to believe that the individual

poses a threat to themselves or others, on crime. He notes that if patients are aware

of this law (which could breach confidentiality), they may opt to not get treatment,

thus increasing the number of untreated mentally ill individuals. Edwards concludes

that the laws were associated with an increase in homicides. Access to substance

abuse centers has also shown to be important as Bondurant, Lindo, and Swensen 2018

find evidence through the closure and opening of substance abuse facilities that both

2
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violent and financial crimes were reduced as a result of the presence of these facilities.

A common theme in these papers is that crime may be reduced as a result of

mental health treatment. Because of this, access to treatment could be an important

factor in determining if those with mental illness engage in criminal activity. In the

last 25 years, states have passed legislation aimed at increasing individuals’ mental

heathcare coverage. An integral assumption for this study is that the channel through

which this legislation affects crime is through increased access to mental health services.

It is therefore important that the mandates have legislative bite. I will follow Dave

and Mukerjee 2011 who study whether Mental Health Parity Laws were successful in

increasing access to mental health services. They determine that mandates reduce

the probability of being uninsured by a net 2.4 percentage points, but only when the

mandated mental health coverage is comprehensive. I therefore treat only broad levels

of parity as a potential vehicle to increase mental health care access. The results

in Dave and Mukerjee 2011 are backed by Harris, Carpenter, and Bao 2006 which

also used a DiD approach, where the authors stratify adults according to their most

stressful month of the year. They conclude that for those with lower and middle

distress levels, parity laws increased the probability of accessing health care by 1.2 and

1.8 percent respectively. No effect was found for those in the upper distress group.

The most similar study is Klick and Markowitz 2006. They use a DiD approach

seeking to determine if the increased access to mental health services granted by

parity laws would be successful in reducing suicides, which are more prevalent for the

mentally ill than the general population. As their paper is more reserved in regard to

an assertion about the effectiveness of access gains to treatment due to the legislation2

and its results showed no effect on suicide rates as a result of parity laws, in contrast

to the crime outcomes listed above. I support this conclusion by extending my analysis

2This may be a result of examining the effect of parity laws as a whole without controlling for
the strength of those laws.

3
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to suicide rates and find that even the strongest parity laws have no effect on suicides.

This paper adds value to the above literature in that it exploits differences in legally

mandated levels of mental health care parity to examine a direct link between access

to voluntary or preventative mental health service and overall crime. This is important

because while there is evidence that mandatory access to mental health services can

reduce crime and that mental health parity laws can increase this access, Klick and

Markowitz 2006 showed that this legislation was ineffective in reducing suicide, a

prominent, and in cases related to depression and anxiety, treatable consequence of

mental illness. This result is surprising on the surface. Suicide is a problem that is

greatly more prevalent among the mentally ill. However, Bertolote 2004 concluded

that it is difficult to set up standardized plans for suicide prevention, because what

works in some instances may not work in others. This may explain the lack of evidence

that the legislation was effective at reducing suicides. Though the outcomes are

different (crime/violence against others versus violence against themselves), there is

need for clarity on this issue. This study attempts to establish if there is a direct link

between increasing voluntary passive mental healthcare access, as opposed to being

involuntarily committed, can curb crime or suicide.

The remainder of the paper will be organized as follows: In Section 1.2, I describe

mental health parity legislation in detail. In Section 1.3, I introduce the data. In

Section 1.4, I detail the empirical framework. In Section 1.5, I analyze the results and

I test the assumptions of the model. I also provide further explorations, including

how states that already had limited legislation in place may have affected the results,

as well as the effect of these mandates on suicides. I conclude in Section 1.6.

4
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1.2 Background

Mental Health Parity Mandates are laws that require private insurance to treat

mental health in parallel to how they treat physical ailments. This is applied in

varying degrees over time and is particularly effective where there are obvious parallels

between mental illness and physical wellness, such as a given copay on each type of

routine checkup being mandated to be similar. The classification on mandate strength

is based on the following: Broad mandates include all or nearly all mental illnesses

in their mandates, including substance abuse. Limited mandates have some sort of

weakness that prevents broad application, doesn’t cover substance abuse, or limits

the application in some other way. Low/No Mandates indicate that either a state has

no mental health parity legislation at all or the legislation in place does not effectively

mandate parity for mental health for insured citizens. My definition is very similar

to that in Dave and Mukerjee 2011, with minor exceptions. Figure 1.1 counts the

number of states that have implemented laws of different strengths over time. Notice

that there were no broad mandates prior to 1994. Eleven states reached this level

and once increasing the strength of the mandates, no state decreased the strength

afterward. As Dave and Mukerjee 2011 conclude that only broad mandates were

successful in increasing access to mental health care, I consider an area treated only

under broad mandates. A potential drawback in using mental health parity legislation

is that it targets those that already have private insurance. Those that already have

insurance may be relatively less likely to commit crimes, which could make it less

likely to observe an effect statistically different from zero.

1.3 Data

I use monthly data at the county level from 1990 to 2007. I categorize Mental health

mandates by reviewing state laws using the National Council of State Legislatures 2018.

5
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Additionally, the categorizations are guided by the previous use of these data by Dave

and Mukerjee 2011. Over time, 11 states gain broad parity mandate characterization.3

Of these, six of them already had some form of limited mandates.4

Arrests data come from the Uniform Crime Report(UCR), published by the Federal

Bureau of Investigation 2018. The UCR reports using a hierarchical system. This

means that if multiple crimes are committed at the same time, only the most severe

crime is reported. As a result, the most serious crimes are likely to be the most

accurately reported. I include arrests for both violent crime, such as rape and murder,

and property crime, such as burglary and vandalism. Figure 1.2 graphs the arrests

by year over treatment through broad mental health parity mandates. Treated (ever-

treated) states and non-treated (never-treated) states have similar arrest rates to start,

but the treated states eventually

I use several standard controls for crime analyses: as a proxy for burdens placed

upon minorities through discrimination, I use percent black. Total and black pop-

ulation counts were attained from the U.S. Bureau of the Census 2019 for 1990,

2000, and 2010. I geometrically interpolated for intercensal years, and then calculated

the estimate of the percentage of the population that are black. Additionally, I use

unemployment rate, and employment (count) which come from the Bureau of Labor

Statistics 2019.

Table 1.1 presents the summary statistics stratified by treatment status. An

observation is considered treated if it ever passes a mental health parity mandate before

2007. Treated states have slightly more arrests per 100,000, have 0.79% percentage

points less black population, have 0.08% percentage points smaller unemployment

rate, and have over 17,000 more employed workers than treated states.

3These states are: Arkansas, Connecticut, Indiana, Maine, Maryland, Minnesota, Oregon, Rhode
Island, Vermont, Virginia, West Virgina. My categorization differs from Dave and Mukerjee 2011 in
that I do not consider North Carolina to be treated due to weaknesses in its legislation.

4These states are: Arkansas, Indiana, Maine, Minnesota, Oregon, West Virginia.

6
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1.4 Empirical Methodology

Dave and Mukerjee 2011 find that broad parity mandates was effective at increasing

access to mental health care. If this access translates into effective treatment, it should

reduce deviant behavior. To investigate, I estimate the effect of broad mandates on

crime. In particular, I estimate:

ycst = ψt + χc + β11(Treatedcst = 1 × Postcst = 1) + β4Xcst + εcst (1.1)

where, ycst is the number of arrests for violent and property crimes, 1(Treatedst =

1 × Postst = 1) indicates if county c in state s is treated in time t. The parameters ψt

and χc represent month-year and county fixed effects, respectively; and Xst represents

a set of controls that vary across counties and time. These include percentage black,

unemployment rate, and employment. Standard errors are clustered at the state level.

This procedure assumes that trends in crime-rates in both treated and non-treated

counties would be the same, absent treatment.

1.5 Results

1.5.1 Difference-in-Differences Results

Table 3.5 presents the results from estimating the baseline model with an expanding

set of controls. Starting with no controls, the following are added in this order

across columns: unemployment rate, employment (count), and percent black. Once

unemployment rate is controlled for, results vary little and are consistently not

statistically significant. Coefficients range from -4.442 to -4.981, compared to the

average total arrests rate of 117.52, a decrease of 3.8%.5

5Additionally, I stratified the regressions by population, but did not find any statistically
significant outcomes. Tables 1.4 and 1.5 present the results of these regressions, while Tables 1.7 and
1.6 present the differential effects of changing from a more limited mandate to a broad one, as before,
on the stratified regressions.

7
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The effects may be muted by those already having insurance being less likely to

commit crime. Additionally, in Table 1.3, I decompose the DiD into a series of 2 × 2

models a simple estimate of the effect of parity mandates on crime in the manner

of Goodman-Bacon 2018, and find that the effect of treatment on treated states

when compared to states that are not treated, produce an estimate of a reduction 5.1

crimes per 100,000. This effect is dampened because 7.7% of the DiD estimate that

comes from timing has the opposite sign. Most of this is driven by the comparison

between states that are treated relatively early and are compared against states that

are treated later, prior to treatment. Without the biased-timing terms, the result

is a decrease of 5.1 crimes, a decrease of 4.3%. Figure 1.4 graphs the 2x2 estimates

against their weights. Note that a large portion of the estimation is coming from only

a few estimates. These are terms where treatment occurred in the middle of the panel

and/or have more variation.

1.5.2 Event Study

In order to support parallel trends assumption required for using the DiD technique

and to test whether or not the effect of the legislation on crime changes relative to time

to and after its implementation, I perform an event study in the manner of Jacobson,

LaLonde, and Sullivan 1993 and Kline 2011. To reduce noise in this analysis, periods

have been grouped into twelve month (one year) bins. Specifically, I estimate the

following model:

ycst = ψt + χc +
∑∑∑
i

δtDcst + βXcst + εcst (1.2)

where Dcst is a vector of dummies that equal one if and only if parity levels are

changing to broad mandates in county c and state s exactly t years away. This

replaces the indicator, 1(Treatedcst = 1 × Postcst = 1), and instead allows the effect

of broad mandates to vary over time. I omit the dummy for the year prior to the

event (that is, t = −1) making all coefficients relative to that year.

8
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The results of the event study are displayed in Figure 1.3. Years relative to the

implementation of broad mandates are on the x-axis and the effect of the mandate

in that year is on the y-axis. Shaded areas represent 90% confidence intervals while

95% confidence intervals are denoted by dotted lines. To test that the parallel trends

assumption holds in the pre-treatment period, I should not observe coefficients before

the event being significantly different than zero. A test of the joint significance of all

δt where t < 0 produced a p-value of 0.1950, meaning that one cannot reject the null

hypothesis of common trends at normal levels of statistical significance. Additionally,

there is not an individually significant estimate at any period post-treatment.

1.5.3 Differential Effects

These results may have been weakened because some of these states already had

some form of mental health parity. By including the differential effect of a state

changing to a broad mandate from a limited one, Table 1.8 shows the results of

including the differential effect of a state changing from a limited mandate to a broad

one. The coefficient itself is not statistically significant at 7.16 (a positive sign), the

overall effect of broad mandates in states that changed from limited to broad parity

levels is not significant at -2.54. When controlling for the prior mental health parity

level, the effect of mental health parity laws going from low/no mandates to broad

mandates on crime to be -9.7, which is significant at the 10% level.

1.5.4 Suicides

A ubiquitous violent behavior induced by mental illness is suicide. In Figure 1.6, I

graph the rank in terms of number of deaths associated with suicide by age group.

There are three age groups where suicide is the number two killer. Even being aged 65

or older, which is omitted because it is not a top ten killer, is considered a risk factor

for suicide. It simply doesn’t show up because elderly individuals have many illness
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related causes of death. If increased access to mental health care through parity laws

was not effective at reducing crime, perhaps it still affects suicide rates. Recall that

Klick and Markowitz 2006 did not find evidence that suicides decreased as a result

of mental health parity laws. As I did when modeling arrests, I consider a county

treated only if it is within a state that has passed a broad parity mandate. Suicide

data were gathered from the Center for Disease Control and Prevention 2019. They

include any death that occurred with known intention to self-harm. This includes all

methods that induced the suicide. Figure 1.7 shows the rate over time.

I estimate the models in Equations 1.1 and 1.2 with suicide as the dependent

variable. I report the results of the DiD and Event Study designs in Table 1.9 and

Figure 1.8, respectively. The coefficient of interest reported is 0.53, which is both

practically and statistically insignificant. The event study reports small statistical,

but little practical, significance prior to treatment and no significance post treatment.6

1.6 Conclusion

In this paper, I study whether access to mental health care affects crime. In

particular, I focus on those that already have private insurance and how their plans

would increase their access to mental health care as a result of broad parity mandates.

I find no evidence that broad mandates are effective at reducing crime. Further, I

extended the analysis to include suicides. I found no evidence of a decrease in suicides

as a result of broad mental health parity legislation. This supports the work of Klick

and Markowitz 2006 which studies the effect of all mental health parity laws on suicide

and found no effect.

These results may be explained by those with private insurance, the target of

parity legislation, not being the primary perpetrators of crimes. This is additionally

compounded with the difficulty in predicting future violence in SMI individuals and the

6With a p-value of 0.0294, the hypothesis that there are no pre-trends is rejected.
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ineffectiveness of standardized suicide prevention plans. Accordingly, future research

should focus on how access to mental health care for more likely perpetrators could

change their behavior.

11



www.manaraa.com

Tables

Table 1.1: Summary Statistics

Full Control Counties Treated Counties Difference
mean sd mean sd mean sd p

Total Arrest Rate 87.12 67.02 81.22 62.68 88.66 68.02 (0.00)
black_pct 7.39 12.58 7.55 12.57 7.35 12.58 (0.00)
unemp_rt 5.78 2.97 5.84 2.97 5.77 2.97 (0.00)
empl 50482.88 150405.81 37475.99 74942.14 53869.30 164298.25 (0.00)
total_pop 105558.41 318714.50 75518.64 144374.02 113379.43 349718.10 (0.00)
Observations 462984 95640 367344 462984
For summary statistics, data is at the county level.
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Table 1.2: The Effect of Broad Mental Health Parity Mandate on Crime

(1) (2) (3) (4)
Total Arrest Rate Total Arrest Rate Total Arrest Rate Total Arrest Rate

Broad Parity Mandate -4.442 -4.608 -4.981 -4.970
(4.503) (4.575) (4.551) (4.442)

Unemployment X X X
Employment X X
Percent Black X
R-Squared 0.035 0.035 0.036 0.036
Observations 462,984 462,984 462,984 462,984
Standard errors in parentheses
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01
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Table 1.3: Decomposition of Difference in Differences Estimates by Treatment Timing

DD Comparison Weight Avg DD Estimate
Earlier T vs. Later C 0.046 7.106
Later T vs. Earlier C 0.031 0.078
T vs. Never treated 0.923 -5.103
T vs. Already treated 0.000 -1.609
T = Treatment; C = Comparison
This represents the decomposition of a simple OLS DiD.
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Table 1.4: The Effect of Broad Mental Health Parity Mandate on Crime, County Populations >= 10,000

(1) (2) (3) (4)
Total Arrest Rate Total Arrest Rate Total Arrest Rate Total Arrest Rate

Broad Parity Mandate -4.374 -4.513 -4.984 -5.013
(4.770) (4.845) (4.823) (4.758)

Unemployment X X X
Employment X X
Percent Black X
R-Squared 0.041 0.041 0.042 0.043
Observations 391,980 391,980 391,980 391,980
Standard errors in parentheses
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.0115
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Table 1.5: The Effect of Broad Mental Health Parity Mandate on Crime, County Populations >= 50,000

(1) (2) (3) (4)
Total Arrest Rate Total Arrest Rate Total Arrest Rate Total Arrest Rate

Broad Parity Mandate -0.058 -0.071 -0.653 -1.001
(6.110) (6.145) (6.072) (6.034)

Unemployment X X X
Employment X X
Percent Black X
R-Squared 0.067 0.067 0.070 0.070
Observations 162,216 162,216 162,216 162,216
Standard errors in parentheses
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01
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Table 1.6: Differential Effect of a State Changing From Limited Parity to Broad Parity

(1)
Total Arrest Rate

Broad Parity Mandate -8.962
(5.511)

Broad Mandate=1×Limited to Broad Mandate Change=1 6.017
(6.411)

Effect in States that Changed From Limited to Broad Mandates -2.945
P-Value 0.585
R-Squared 0.043
Observations 391,980
Standard errors in parentheses
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01
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Table 1.7: Differential Effect of a State Changing From Limited Parity to Broad Parity

(1)
Total Arrest Rate

Broad Parity Mandate -6.785
(4.915)

Broad Mandate=1×Limited to Broad Mandate Change=1 9.785
(8.932)

Effect in States that Changed From Limited to Broad Mandates 3.000
P-Value 0.721
R-Squared 0.071
Observations 162,216
Standard errors in parentheses
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01
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Table 1.8: Differential Effect of a State Changing From Limited Parity to Broad Parity

(1)
Total Arrest Rate

Broad Parity Mandate -9.699*
(5.091)

Broad Mandate=1×Limited to Broad Mandate Change=1 7.164
(5.873)

Effect in States that Changed From Limited to Broad Mandates -2.535
P-Value 0.601
R-Squared 0.036
Observations 462,984
Standard errors in parentheses
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01
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Table 1.9: The Effect of Broad Mental Health Parity Mandate on Crime

(1)
Suicide

Broad Parity Mandate 0.529
(1.438)

R-Squared 0.083
Observations 7,375
Standard errors in parentheses
Standard errors are robust and clustered at the state level.
OLS estimates.
* p < 0.10, ** p < 0.05, *** p < 0.01

Figures

Figure 1.1: Mental Health Parity Legislation Over Time
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Figure 1.2: Arrests by Year
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Figure 1.3: Event Study Estimates of the Effect of Mental Health Parity Laws on
Crime
Note: This figure depicts the effect of broad mental health parity on overall crime
rate when the effect is allowed to vary by time. The periods are grouped into one year
bins relative to treatment. The year prior to treatment is omitted, thus the other
periods are relative to that year. The solid line reports the estimate of the effect of
being treated in that time relative to treatment. The gray highlighted area represents
the 90% confidence interval for the estimation and the dotted lines represent the 95%
confidence interval. A test of the joint significance of all δt where t < 0 produced a
p-value of 0.1950.
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Figure 1.4: 2X2 Decomposition
Note: This figure plots the results from the decomposition of the DiD model, as in
Goodman-Bacon(2018). Open circles represent 2x2 terms for when a timing group is
compared to pre-1990 treated groups. These do not exist in practice for this study,
and the weight for such terms equals zero. Closed triangles represent treated vs.
non-treated states. The x’s represent the timing terms: a light x is early treated vs
later treated, prior to treatment. A dark x is later treated vs. earlier treated, post
treatment. Weighting these averages against their weights (the x-axis) yields a DiD
result of -4.38.
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Figure 1.5: Event Study Estimates of the Effect of Mental Health Parity Laws on
Arrest Rates - States That Changed From Low/No Parity Mandates to Broad
Note: This figure depicts the effect of broad mental health parity on suicide rate
when the effect is allowed to vary by time for states that changed from low/no parity
mandates to broad mandates. The periods are grouped into one year bins relative to
treatment. The year prior to treatment is omitted, thus the other periods are relative
to that year. The solid line reports the estimate of the effect of being treated in that
time relative to treatment. The gray highlighted area represents the 90% confidence
interval for the estimation and the dotted lines represent the 95% confidence interval.
With a p-value of 0.014, the hypothesis that there are no pre-trends is rejected.
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Figure 1.6: Suicide Ranking by Age Group
Note: This figure illustrates the leading cause of death rank for suicide by age groups,
thus, the smaller the number, the higher the ranking. Omitted age groups did not
include suicide among their top ten causes of death.

Figure 1.7: Suicide Rate Over Time

25



www.manaraa.com

Figure 1.8: Event Study Estimates of the Effect of Mental Health Parity Laws on
Suicide Rate
Note: This figure depicts the effect of broad mental health parity on suicide rate
when the effect is allowed to vary by time. The periods are grouped into one year
bins relative to treatment. The year prior to treatment is omitted, thus the other
periods are relative to that year. The solid line reports the estimate of the effect of
being treated in that time relative to treatment. The gray highlighted area represents
the 90% confidence interval for the estimation and the dotted lines represent the
95% confidence interval. With a p-value of 0.0294, the hypothesis that there are no
pre-trends is rejected.
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Chapter 2

Pride and Prejudice: Same-Sex Marriage

Legalization Announcements and LGBT

Hate-Crimes 1

2.1 Introduction

On the night of October 6, 1998, Matthew Shepard, a 21-year-old gay man, was

beaten, tortured, tied to a fence and left for dead by two men he had met at a bar. Six

days later, Mr. Shepard died from his injuries. His murder brought national attention

to hate-motivated acts against lesbian, gay, bisexual, and transgender (LGBT) people.

Despite progress on civil rights for LGBT people since Mr. Shepard’s death, the

level of LGBT hate-crimes has remained steady over time, according to annual FBI

reports (Figure 2.1). The LGBT community comprises 4.5% of the overall population;

however, they are the target of 17% of all hate-crimes.2 In fact, LGBT people are

more likely to be the target of a hate-crime than any other individual minority group

(The New York Times 2016). Such incidents can reinforce a culture of homophobia,

resulting in society incurring an economic cost (Badgett 2014; Badgett, Park, and

Flores 2018).

In response to public concerns surrounding LGBT hate-crimes, the federal govern-

ment and several states have added LGBT people as a protected group under existing

1Robert Pettis with Zehra Valencia and Breyon Williams. Submitted to Journal of Law and
Economics, 3/26/19.

2Gallup Daily tracking survey and the Gallup-Sharecare Well-Being Index survey, 2017.
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hate-crime laws, although such laws have not proven to be effective in reducing LGBT

hate-crimes.3 Given continued concerns surrounding LGBT hate-crimes and calls to

consider prevention strategies aside from hate-crime laws (Meyer 2014), we ask whether

same-sex marriage legalization announcements reduce the LGBT hate-crime rate. To

the best of our knowledge, this study is the first to provide credible estimates of the

casual effects of same-sex marriage laws on hate-crimes based on sexual orientation.

We consider same-sex marriage laws because existing research suggests same-sex

marriage legalization leads to greater tolerance of LGBT people.4 Further, the issue

of same-sex marriage is one of the most salient social issues in recent U.S. politics.

If such a notable issue has little impact on the LGBT hate-crimes, it is unlikely

that other LGBT-specific policies impact such crimes (Flores and Barclay 2016).

We consider announcements of same-sex marriage legalization because of the clear

relationship between the timing of high-exposure events relating to same-sex marriage

and information seeking on the issue, suggesting that the level of attentiveness is

greater around announcement dates than enactment dates (Flores and Barclay 2016).

Considering these links, it is plausible that greater tolerance of sexual minorities is

manifested by reductions in the LGBT hate-crimes following a same-sex marriage

legalization announcement.

Studying same-sex marriage legalization is timely, because these policy changes can

serve as a model for the countries where same-sex unions are not legally recognized. For

instance, even in Europe, which is the most hospitable location for LGBT individuals

(Mccarthy 2015), there are countries that still forbid same-sex marriages (Gillet 2018).5

To estimate the effect of a same-sex marriage legalization announcement on the

LGBT hate-crime rate, we exploit variation in the timing of same-sex marriage

3Franklin 2002; Meyer 2014; Spade 2015; Valcore and Dodge 2016; CNN 2018.

4Takács and Szalma 2011; Hooghe and Meeusen 2013; Kreitzer, Hamilton, and Tolbert 2014;
Flores and Barclay 2016; Takács, Szalma, and Bartus 2016; Kenny and Patel 2017; Aksoy et al. 2018.

5Poland, Bulgaria, Latvia, Lithuania.
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legalization announcements across U.S. states, using a difference-in-differences design

and quarterly data from U.S. counties between 2000 and 2015. Our analysis indicates

that same-sex marriage legalization announcements have a substantial effect on hate-

crimes motivated by sexual orientation. We find that a legalization announcement leads

to a reduction in the LGBT hate-crime rate of 0.111 per 100,000 people. Interpreting

the estimated marginal effect in percent changes, same-sex marriage legalization

announcements leads to a 30 percent reduction from the base LGBT hate-crime rate,

which averaged 0.37 per 100,000 people. This result is largely driven by reductions in

violent LGBT hate-crimes, although there is also evidence of a reduction in LGBT

property hate-crimes. Together, our findings contribute to the existing literature on

the impact of public policies on hate-crimes based on sexual orientation, demonstrating

that salient LGBT-specific public policy announcements are, by themselves, effective

at benefiting the LGBT community.6

We next examine whether observed reductions in the LGBT hate-crime rate are

most pronounced in counties with high shares of likely perpetrators of LGBT hate-

crimes. We argue that following a same-sex marriage legalization announcement, the

effect is stronger in counties with a large share of likely perpetrators. Since we are un-

able to identify differences across counties in actual shares of perpetrators, we examine

the mechanism using likely perpetrators. Perpetrators of LGBT hate-crimes tend to be

young white males and ideologically conservative franklin2000antigay,herek2002victim.

We find that highly conservative counties with a large share of young white males

see bigger reductions in the LGBT hate-crime rate following a same-sex marriage

legalization announcement. The result provides suggestive evidence supporting our

claim that same-sex marriage legalization announcements impact the behavior of

perpetrators of LGBT hate-crimes.

6Flores and Barclay 2016, Takács, Szalma, and Bartus 2016, Kreitzer, Hamilton, and Tolbert
2014, Aksoy et al. 2018, Hooghe and Meeusen 2013.
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To support our claim that the observed reductions in LGBT hate-crimes are a

result of the same-sex marriage legalization announcements rather than unrelated

factor(s), we conduct the following analyses: First, we show that the main results

hold against several robustness checks that are meant to alleviate concerns of non-

randomness in the assignment of treatment. Second, event-study estimates provide

evidence that the main results are not driven by differences in trends between the

treated and non-treated counties in the pre-treatment period, and that the effect of

the legalization announcements on LGBT hate-crimes are long lasting. Third, we

show that effects from same-sex marriage legalization announcements are unique to

the LGBT hate-crimes: same-sex marriage legalization announcements do not impact

other types of crimes. Fourth, we show that same-sex marriage bans had the opposite

effect on LGBT hate-crimes; a result we would expect if, indeed, our proposed causal

mechanism is true. Our findings suggest the importance of legislation that prevents

stigmatizing LGBT people, as any such legal discrimination can cultivate increased

violence against them.

The remainder of the paper is organized as follows: Section 2 provides background

of same-sex marriage laws and attitudes. Section 3 discusses the empirical strategy

and our data. Section 4 reviews the main results along with robustness checks, the

event-study estimates of the effect of a same-sex marriage legalization announcement

on the LGBT hate-crime rate, and falsification tests. Section 5 provides further

examinations: analyses of the locations where likely perpetrators reside and the

impact of same-sex marriage bans on LGBT hate-crimes. Section 6 concludes with a

summary of our findings.
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2.2 Background

2.2.1 Same-Sex Marriage in the United States

Americans’ attitudes toward homosexuality have become increasingly liberal since

1990 (Loftus 2001). According to General Social Survey data, in 1990, 73 percent of

Americans believed that sexual relations between two adults of the same-sex is “always

wrong”. By 2012, the percentage expressing this belief dropped to 43.4. Similarly,

in 1988, 2.6 percent of Americans “strongly agree” that homosexuals should have

the right to marry; this percentage increased to 24.9 percent in 2012. Despite these

trends, The Defense of Marriage Act (DOMA), which defined marriage for federal

purposes as the union of one man and one woman, passed in May of 1996 and allowed

states to refuse to recognize same-sex marriages granted under the laws of other states

(Cahill and Cahill 2004). Many states had legislation banning same-sex marriages

even before the federal law. Maryland became the first state to pass a statute banning

marriage between same-sex couples in 1973. From 1998 to 2008, ballots in 30 states

had initiatives to ban same-sex marriage (McVeigh and Maria-Elena 2009).

More recently, state and federal appellate courts have repealed state bans on same-

sex marriage. On June 26, 2013, in United States v. Windsor, the Supreme Court

struck down a major portion of DOMA, ruling that the U.S. federal interpretation of

“marriage” and “spouse” to apply only to opposite-sex unions was unconstitutional and

that married same-sex couples are entitled to federal benefits. On June 26, 2015, with

Obergefell v. Hodges, the Supreme Court of the United States ruled that same-sex

couples have the right to marry in the United States. Before the Supreme Court

decisions, states set different paths towards marriage equality. Some states voluntarily

implemented these laws by legislation or voter initiatives while others were forced to

repeal bans on same-sex marriage by state and federal courts. In 2004, Massachusetts

became the first state to legally recognize same-sex marriage. Prior to Obergefell v.
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Hodges, 34 states and the District of Columbia had legalized same-sex marriage (see

Figure 2.2 and Table A.1).

2.2.2 Attitudes and Hate-Crimes Based on Sexual Orientation

Hate-crimes are the criminal acts that are perpetrated against an individual because

of his or her perceived membership in or connection with a particular group (Herek

1989; Craig and Waldo 1996). They are especially serious because the motive behind

the crime is to terrorize a group of people (Herek 1989). Therefore, the incidence

of hate-crimes are understood as a serious social problem (Herek 1989; Jenness and

Broad 1997).

LGBT individuals, in particular have been targets of violence and discrimination

in society. Approximately 50 percent of LGBT adults in the U.S. experience bias-

motivated aggression at some point (Herek 2009). There were 7,121 hate-crime

victims in 2015 and 17.7 percent were targeted because of a sexual orientation bias

(Federal Bureau of Investigation 2018). Sexual prejudice, or negative attitudes toward

homosexual behavior or LGBT individuals (Herek 2000; McDevitt, Levin, and Bennett

2002) is believed to be a major determinant of antigay violence (Parrott 2008; Rayburn

and Davison 2002).

2.2.3 Pro-Equality Laws and Attitudes

The aim of legal regulation is to change behaviors. Legal regulation can achieve

its goals directly, by building fear of punishment, or indirectly, by changing attitudes

about certain behaviors. Changing attitudes can be particularly effective, especially if

moral principles have been influenced (Bilz and Nadler 2014). If this is the case, we

can expect same-sex legislation to impact attitudes about LGBT individuals which

can impact crime against them.

Researchers and policy makers have long been interested in the effects of pro-
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equality policies and programs on societal attitudes. Flores and Barclay 2016 discuss

four models of attitude change with policy development: backlash, legitimacy, polar-

ization, and consensus. According to the backlash model, disapproval against LGBT

people would increase after same-sex marriage legalization. Since attitudes can affect

hate-crime rates, the overall hate-crime rate against LGBT individuals should increase

following same-sex marriage legalization. For instance, a related paper finds that

hate-crime laws that include sexual orientation reduce hate-crime incidences in the

U.S (Levy and Levy 2017). A legitimacy model predicts that legal rulings on same-sex

marriage may increase acceptance and approval of LGBT people. Based on this model,

the hate-crime rate against LGBT individuals would decrease after same-sex marriage

legalization. In a polarization model, same-sex marriage policies should effect different

groups of people in different ways: people who approve of LGBT individuals should

increase their approval after a same-sex marriage legalization, and those who are

opposed to LGBT individuals would intensify their opposition. If this hypothesis

holds, we would expect, after a same-sex marriage legalization law, the perpetrators

to commit even more hate-crimes. Finally, according to a consensus model, attitudes

form policy but that policy has no impacts on attitudes. Under this model, we would

not expect any impact of same-sex marriages on hate-crime rates.

Literature on how same-sex relationship policies may be associated with public

opinion and attitudes is limited. Takács, Szalma, and Bartus 2016 examine same-

sex adoption policies in European countries using the 2008-2010 European Values

Survey (EVS). They show that the introduction of legal rights for same-sex adoption

contributes to increasing levels of acceptance towards homosexual couples’ adoption

rights. Kreitzer, Hamilton, and Tolbert 2014 use individual-level panel data conducted

before and after Iowa’s state Supreme Court legalized same-sex marriage. They

show that the support for same-sex marriage increased after legalization, especially

from democrats, non-religious, non-evangelical, educated, and younger individuals.

33



www.manaraa.com

Flores and Barclay 2016 use individual-level panel data from the American National

Election Study for 2012 - 2013. They show, in line with the consensus model, most

of the people surveyed did not change their positions on the question of whether

they favor legal marriage rights for same-sex couples, favor civil unions, or do not

think there should be any legal recognition. However, in line with the legitimacy

model, they show people in states that introduced same-sex marriage experienced the

highest reduction in anti-gay attitudes. Hooghe and Meeusen 2013 and Aksoy et al.

2018 use European Social Surveys for period 2002-2010 and 2002-2016, respectively.

They both analyze the effect of same-sex marriage recognition policies on attitudes

toward sexual minorities. They find that in countries with relationship recognition

policies for same-sex couples, there is an increase in the the share of citizens who

agree that “gay men and lesbians should be free to live their own life as they wish”. In

addition, Aksoy et al. 2018 show that men, older individuals, less educated individuals,

individuals who have a partner, individuals who live in rural areas, and more religious

individuals report significantly more negative attitudes toward sexual minorities than

others. Additionally, they show that legal same-sex relationship recognition policies

were associated with statistically significant improvements in attitudes toward sexual

minorities especially for men, partnered individuals and individuals who live in the

rural areas. State and Wernerfelt 2017 use data from Facebook profiles over the course

of 2014. They show that same-sex legalization laws are associated with LGBT-support

measures such as changing one’s sexual orientation to gay or lesbian, or ‘liking’ a page

for LGBT rights organizations.

Our paper is in line with the legitimacy model and contributes to the literature

in several aspects. First, our study is the first study to examine the credible casual

relationship between same-sex marriage laws and hate-crimes that are based on sexual

orientation. Second, while prior studies mostly provide evidence on the effect of

the pro-equality laws on societal approval of LGBT individuals, we show that the
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actions of the perpetrators are changing. Therefore, we are able to show how an

important outcome, hate-crime based on sexual orientation, can be impacted by

same-sex marriage legalization announcements.

2.3 Data and Empirical Strategy

2.3.1 Data

We use a variety of data sources that predate the 2015 Supreme Court ruling

legalizing same-sex marriage nationwide. LGBT hate-crimes are identified from

incident-level data from the Federal Bureau of Investigation’s (FBI) Uniform Crime

Reporting (UCR) Data Series for 2000-2015.7 The Hate-Crime Statistics Act of 1990

mandates the Attorney General to collect data annually. The FBI defines a hate-

crime as a crime that manifests evidence of prejudice based on disability, ethnicity,

race, religion, and sexual orientation. Local enforcement agencies voluntarily report

hate-crime incidents to the FBI UCR Program.8 The FBI UCR Program provides

guidelines to local enforcement agencies regarding the identification and reporting of

crimes motivated by bias.

Bias motivation is used to indicate whether or not an offense was motivated by

the offenders’ bias and, if so, what type of bias. We define an LGBT hate-crime as a

crime with bias motivated by sexual orientation against gay (male), lesbian (female),

bisexual, or transgender individuals. The nature of each incident, e.g., assault, murder,

7UCR Data Series are used in former studies (Kaushal, Kaestner, and Reimers 2007, Ryan and
Leeson 2011, Mulholland 2013, Anderson, Crost, and Rees 2018).

8According to Ryan and Leeson 2011, more than 80 percent of the U.S. population is covered by
hate-crime reporting. However, we can not rule out the fact that FBI hate-crime reports depend
on the cooperation of local law enforcement agencies. Boyd, Berk, and Hamner 1996 show that
understandings or definitions of hate-crimes may vary across divisions. Another issue with the
UCR data is under-reporting (Masucci and Langton 2017, Ruback, Gladfelter, and Lantz 2018).
Therefore, our results should be interpreted with caution since we can not eliminate the possible
biases that might occur due to these data issues. Table A.7 provides summary statistics for reporter
and never-reporter counties between 2000 and 2015. During the study period, the number of counties
that have ever reported is 1,845, whereas the number of counties that have never reported is 2,793.
The characteristics of both groups are mostly similar.
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destruction of property, etc., is reported in the data and is used to classify an LGBT

hate-crime as either a violent crime or a property crime. We characterize a violent

LGBT hate-crime as an LGBT hate-crime in which a perpetrator uses or threatens to

use force upon a victim. An LGBT hate-crime against property is an LGBT hate-

crime in which property was either damaged or stolen.9 We aggregate the hate-crime

incidents to the county/quarter-year level.

We gather the county-level estimates of total population and the percentages Black,

Hispanic, male, young adults (ages 15-34), middle-aged adults (ages 35-54), older

adults (ages 55-64), and senior adults (65 and up) from the U.S. Census, 2000-2015.

We also obtain annual county-level estimates for the rate of urbanization from the U.S.

Census, 2000-2015. We find estimates of county-level share of the population that

are frequent religious service attendees using Gallup’s annual Economy and Personal

Finance Survey, which has collected data about American’s religious service attendance

since 2003. Respondents are classified as frequent religious service attendees if they

attend religious services at least every week. We draw from county-level estimates

on educational attainment from the U.S. Census. Shares of the population in the

educational attainment groups are based on the total population aged 25 or higher. To

measure the ideology of a state’s citizens, we use the revised citizen ideology measure

originally reported in Berry et al. 1998. Also, to measure the ideology of a state’s

political leaders, we use the updated government ideology measure from Berry et al.

2010. For these ideology measures, larger values reflect a more liberal ideology. We

obtain county level popular vote share won by Democratic presidential candidate

in the last presidential election from Harvard Dataverse U.S. Presidential General

County Election Results (Leip 2016). We get county-level annual data on other types

of crimes from the FBI UCR Data Series for years 2000-2015. For county-level annual

9The violent crimes in the UCR Program compose of murders and non-negligent manslaughters,
rapes, robberies, and aggravated assaults; whereas property crimes include the offenses of burglary,
larceny-theft, motor vehicle theft, and arson (Federal Bureau of Investigation 2018).
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unemployment rates, we gather data from the Bureau of Labor Statistics for years

2000-2015. We get county-level annual poverty estimates and average household

incomes from the U.S. Census for years 2000-2015. Lastly, we control for whether or

not there are other policy changes for LGBT individuals’ rights in the states:10 policies

on hate-crimes based on sexual orientation,11 employment discrimination protections

for sexual identity,12 and civil union rights.13

We use the U.S. Census data to estimate the percentage of same-sex households in

the following way. First, we use the Census 2000 U.S. 5-Percent Public Use Microdata

Sample to estimate the percentage of households that are same-sex at the Public Use

Microdata Area (PUMA) level. Similar to Antecol, Jong, and Steinberger 2008, we

classify a household as same-sex if the head of household is in an unmarried partnership

with a person of the same-sex.14 Second, we collect PUMA-level total household

counts from Census 2000 data and, together with the percentage of households that

are same-sex, we estimate the number of same-sex households at the PUMA level.

Lastly, we match the counties and PUMAs to derive county-level estimates of the

share of households that are same-sex as of 2000.

We consider a county “treated” if the county was ever exposed to a same-sex

marriage legalization announcement during that quarter of that year and the following

quarters. Summary statistics describing the average characteristics of the full sample,

10We gather data for other policy changes for LGBT rights from The U.S. Deparment of Justice
2019 and Movement Advancement Project 2014.

11Currently, 45 states have a hate-crime statute and 30 of them include sexual orientation (Valcore
2018).

12Many states outlaw bias in hiring, promotion, job assignment, termination, and compensation,
as well as harassment on the basis of one’s sexual orientation. Some states broaden those protections
to cover sexual identity (Tilcsik 2011).

13A civil union is a legally recognized relationship between two people similar to marriage, but
don’t provide federal protections, benefits, or responsibilities to couples. Vermont created the first
civil union law in 2000 (Goodnough 2010).

14Same-sex marriages were not legal in 2000.
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ever treated counties before and after they get the treatment, and control counties

are shown in Table 2.1. We have 21,795 observations in the sample. The sample

includes 1,845 U.S. counties in total, with 1,492 ever treated counties, and 353 control

counties. LGBT hate-crime rates are slightly higher across quarter-year observations

in control counties than in treated counties, on average (Figure 2.3). These differences

in LGBT hate-crime levels are possibly due to the treated counties being in more

urbanized areas and having larger populations. Also, the control counties have a

higher poverty rate, on average. Regarding other characteristics, treated counties in

the pre-treatment period and the control counties are largely similar.

2.3.2 Empirical Model

We exploit the variation across states in the timing of same-sex marriage legalization

announcements to estimate the impact of such announcements on LGBT hate-crimes.

We argue that the announcement of a same-sex marriage law change can, in and of

itself, impact the behavior of perpetrators of LGBT hate-crimes as news coverage

and discussions surrounding LGBT persons and the legalization of same-sex marriage

would likely be at their peak around this time. In this way, announcement dates

are more applicable than enactment dates. Counties situated in states where there

were multiple same-sex marriage legalization announcements are excluded from the

sample because the post-treatment period is more clearly defined.15 The following

difference-in-differences model is estimated:

Yscqt = α + β11(Treatedc × Postcqt) + β2Xct + β3Xst + δc + γqt + εscqt, (1)

where the dependent variable, Yscqt, is
LGBT hate- crime incidentsscqt

(Populationscqt/100, 000) , which is the

LGBT hate-crime rate in county c in state s during quarter q and year t. In the

presence of county fixed effects, δc, the effect of having ever been exposed to a same-sex

15Alabama, California, Kansas, Maine, Maryland, New Jersey, and Washington.
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marriage legalization announcement is absorbed. 1(Treatedc×Postcqt) is our variable

of interest and is equal to 1 if (i) the county is ever exposed to a same-sex marriage

legalization announcement and (ii) the time period the county is observed in is on or

after that announcement and 0 otherwise. Xct is a vector of time-varying, county-level

controls. This vector includes (1) demographic controls: shares of the population

that are Black, Hispanic, male, young adults, middle-aged adults, older adults, senior

adults, frequent religious service attendees, high school graduates without a college

degree, and college graduates, and the urbanization rate, (2) socio-political controls:

the popular vote share won by the Democratic presidential candidate in the last

presidential election, and (3) economic controls: the unemployment rate, the share of

the population that is in poverty, and median household income. Xst is a vector of

time-varying, state-level controls. This vector includes the citizen and government

ideology measures and controls for other LGBT-specific state laws: LGBT hate-crime

laws, non-discrimination work-place laws protecting LGBT workers, and civil union

laws. γqt is a vector of quarter-year fixed effects. The county and quarter-year

fixed effects account for time-invariant county heterogeneity and national trends in

crimes over time, respectively. We cluster standard errors at the state level (Bertrand,

Duflo, and Mullainathan 2004). An underlying assumption of the analysis is that any

unobservable differences between treated and control counties are not predictive of

different trends in LGBT hate-crimes independent of treatment.

2.4 Main Results

2.4.1 Main Results

Table 2 shows the effect of a same-sex marriage legalization announcement on

the likelihood of a LGBT hate crime occurring. Model (1) shows the effect without

controls. Based on the results from model (1), the likelihood of a LGBT hate crime

occurring is reduced by 5.7 percentage points following a same-sex marriage legalization
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announcement. To consider the possibility that confounding variables might be biasing

the estimated treatment effect, we control for a comprehensive set of county- and

state-level characteristics in models (2) through (5). The estimated treatment effect

does not vary greatly across specifications, which is suggestive evidence supporting the

underlying assumption of the analysis. Given model (5) includes a comprehensive set of

controls, it is our preferred model. Based on the results from model (5), the likelihood

of a LGBT hate crime occurring is reduced by 5.2 percentage points following a

same-sex marriage legalization announcement.

Given we argue that announcement dates are more salient than enactment dates,

we examine whether or not a similar effect on LGBT hate crimes is observed if

we, instead, exploit variation in the timing of same-sex marriage law enactments

across states. Table 3 shows the results from that analysis using the preferred model.

Based on the results of Table 3, the estimated treatment effect is negative although

less precisely estimated relative to if announcement dates are exploited. This result

provides evidence supporting our assertion that announcement dates are more salient

than enactment dates. In Table A1, we consider several alternative models: models (1)

and (2) estimate the treatment effect from a logistic and probit regression, respectively,

models (3) and (4) estimate the treatment effect from a poisson and negative binomial

count model, respectively, with the number of LGBT hate crimes as the outcome

variable, and models (5) through (7) estimate the treatment effect on the LGBT

hate crime incidence, the likelihood of a violent LGBT hate crime occurring, and

the likelihood of a property LGBT hate crime occurring, respectively. Together, the

results from Table A1 show that the occurrence of LGBT hate crimes is reduced

following a same-sex marriage legalization announcement.
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2.4.2 Robustness Checks

Table A2 provides results from several robustness checks. Model (1) shows that

the main results are robust to restricting the treated counties to ones where exposure

to a same-sex marriage legalization announcement occurred via court-order. Models

(2) and (3) show that the main results are mostly robust to comparing treatment

groups where all counties are urban and rural, respectively. Models (4) and (5) show

that the main results are robust to comparing treatment groups where all counties

have other pro-LGBT laws and no other pro-LGBT laws, respectively. Model (6)

shows that the main results are robust to including counties with multiple same-sex

marriage legalization announcements, where the most recent announcement date is

examined. Lastly, model (7) shows that the main results are robust to restricting the

treated counties to ones where enactment occurred prior to the 2015 Supreme Court

ruling.

2.5 Further Examination

2.5.1 Probing the Mechanism: Might the Effect Be Driven by Changes in

the Behavior of Likely Perpetrators of LGBT Hate Crimes?

The main results demonstrate that the likelihood of a LGBT hate crime occurring

is reduced following a same-sex marriage legalization announcement. We argue that

following a same-sex marriage legalization announcement, perpetrators of LGBT hate

crimes respond by reducing the frequency in which they commit such crimes. If this

is true, we would expect that a same-sex marriage legalization announcement would

be most impactful in counties with high shares of perpetrators. If the estimated

treatment effect shares no connection with perpetrators of LGBT hate crimes, we

would not expect to observe differences in the treatment effect between counties with

different shares of perpetrators. Table 4 provides the results from our probe of this
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potential mechanism.

Since we do not have data on actual perpetrators, we examine the mechanism

using likely perpetrators. Likely perpetrators, we argue, tend to be young males and

ideologically conservative. The share of likely perpetrators should serve as a good

proxy for the share of perpetrators in a county. Further, taking into account that areas

with high shares of LGBT hate crime perpetrators might also have low shares of LGBT

persons, we control for the county-level share of households that are same-sex. Model

(1) estimates the differential effect of a same-sex marriage legalization announcement

on the likelihood of a LGBT hate crime occurring for counties with a high share of

young males. The estimated coefficient on the × % Young Males variable (-0.062)

is the differential effect and tests whether or not the effect of a same-sex marriage

legalization announcement is statistically different for counties with high shares of

young males. The coefficient is negative and statistically different from zero. This

result shows that counties high shares of young males are most impacted by the

same-sex marriage legalization announcement. Further, the linear combination of the

coefficients on the Post Pro-Same-Sex-Marriage Law Announcement and × % Young

Males variables (-0.112) is the effect of a same-sex marriage legalization announcement

on the likelihood of a LGBT hate crime occurring in counties with high shares of

young males.

Model (2) tests whether or not the estimated treatment effect is statistically

different for counties situated in states with high ideological conservative measures.

Although the differential effect is less precisely estimated, the coefficient on the

differential effect is negative. Also, the overall effect for these counties (-0.078) is

larger than the effect on all other counties (-0.060). Lastly, model (3) controls for

the percentage of young males and the ideological conservative measure. Results are

similar. Overall, the results from Table 4 demonstrate that the estimated treatment

effect on LGBT hate crimes, identified from exploiting the variation in the timing of
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same-sex marriage legalization announcements, is largest in counties with high shares

of perpetrators.

2.5.2 Supportive Evidence: The Impact of Same-Sex Marriage Bans on LGBT

Hate Crime Occurrences

Our findings show that a same-sex marriage legalization announcement leads to a

reduction in the likelihood of a LGBT hate crime occurring. If providing rights to

LGBT individuals would improve behavior, it is plausible to expect that restricting

rights would have the opposite effect. For instance in Russia, hate crimes against

LGBT people have doubled in the next five years after a law banning “gay propaganda”

which designed to stop gay pride marches and to detain gay rights activists (Litvinova

2017).

Prior to Obergefell v. Hodges (2015), many states enacted amendments to their

state constitutions which prevented the recognition of same-sex marriages. Before

2000, most of them had legislation banning same-sex marriages . After 2000, some

states began passing state constitutional amendments banning same-sex marriages

as a response to court rulings deeming legislative bans as unconstitutional16. Table

A.1 gives information on the ban dates. Since our findings provide evidence that

LGBT hate crimes declined following to same-sex marriage announcements, we would

expect an increase in LGBT hate crimes after same-sex marriage bans. We would

anticipate even more impact from constitutional bans in areas where there were no

prior legislative bans.

To explore these possibilities, we exploit the variation in the timing of bans on

same-sex marriage across states. We estimate equation (1) where Treatedc is a binary

variable equal to 1 if a county is ever exposed to same-sex marriage ban, and 0

otherwise. Our analyses include all counties in the sample. Table 2.9 presents the

16Colorado, Indiana, Nebraska, Oregon and Wisconsin are the states that did not have ban prior
to 2000, but has ban afterward.
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preferred models which show the effect of a same-sex marriage ban on the likelihood

of an LGBT hate crime occurring. Model (1) shows that the likelihood of an LGBT

hate crime occurring is increased by 1.1 percentage points, on average, following a

ban on same-sex marriage. Even if the effect is not statistically precise, it provides

supportive evidence that restricting LGBT rights has the reverse effect on LGBT

hate crimes. In model (2), we estimate the differential effect of a ban on same-sex

marriage on the likelihood of an LGBT hate crime occurring. We do this for the

counties of states that did not have bans before 2000, but do have bans afterward.

The estimated coefficient on the States Never Banned Before 2000 variable (0.095)

is the differential effect and tests whether or not the effect of a same-sex marriage

ban is statistically different for counties of states that have only ban after 2000. The

coefficient is positive and statistically different from zero. Since areas with bans

prior to 2000 are only reinforcing existing laws, counties without prior bans are most

impacted. Model (3) and (4) are the results for LGBT violent and property hate

crime occurring, respectively. The results show that the effect is mainly driven from

the change in violent crimes. The coefficient for the differential effect for violent crime

(0.085) is positive and statistically different from zero. This means that, following a

same-sex marriage ban, the violent crimes increase in the counties without prior ban.

For property crimes however, the coefficient is 0.004 which is close to zero and is not

significant. This indicates that the same-sex marriage bans have no effect on property

crimes.

2.5.3 Falsification Tests

If the main results are because of some spurious relationship, we might expect

to see significant reductions in other crimes. Table 5 shows the results from several

falsification tests. Models (1) through (4) estimate the effect of a same-sex marriage

legalization announcement on the likelihood of any race-based hate crime occurring,
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the likelihood of any religious-based hate crime occurring, the likelihood of any non-

LGBT hate crime occurring, and the total crime incidence, respectively. The results of

Table 5 demonstrate that these crimes are not impacted following a same-sex marriage

legalization announcement.

2.6 Conclusion

This paper examines the impact of same-sex marriage legalization announcements

on LGBT hate crimes. We exploit the variation across states in the timing of same-sex

marriage legalization announcements to estimate the impact of such announcements

on LGBT hate crimes. We find that following a same-sex marriage legalization

announcement, the likelihood of a LGBT hate crime occurring is reduced by 5.2

percentage points. This result holds against several robustness checks. Further, we

argue that reductions in LGBT hate crime occurrences following a same-sex marriage

legalization announcement is due to perpetrators of LGBT hate crimes reducing the

frequency in which they commit such crimes. Results from our probe of this potential

mechanism provides evidence that the behavior of perpetrators is impacted. Together,

results demonstrate that pro-LGBT laws can help reduce hate crimes against LGBT

persons.
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Tables

Table 2.1: Summary Statistics

Full Treated Counties Treated Counties Control Counties
Pre-Treatment Post-Treatment

Mean Standard Mean Standard Mean Standard Mean Standard
Deviation Deviation Deviation Deviation

Outcomes
LGBT Hate-Crime per 100,000 0.37 1.45 0.37 1.42 0.33 1.05 0.40 1.73
Violent LGBT Hate-Crime per 100,000 0.25 1.14 0.25 1.14 0.23 0.86 0.26 1.30
Property LGBT Hate-Crime per 100,000 0.12 0.90 0.12 0.87 0.10 0.63 0.14 1.13
Any LGBT Hate-Crime 0.30 0.46 0.30 0.46 0.36 0.48 0.27 0.44
Any Violent LGBT Hate-Crime 0.23 0.42 0.22 0.42 0.29 0.45 0.20 0.40
Any Property LGBT Hate-Crime 0.11 0.32 0.11 0.31 0.14 0.35 0.10 0.30
County-Level Demographic Controls
% of Households Same-Sex 0.01 0.02 0.01 0.02 0.02 0.03 0.01 0.02
Total Population 310.804 464.349 312.175 487.047 407.686 489.725 241.867 303.271
% Black 0.10 0.12 0.10 0.12 0.09 0.10 0.12 0.13
% Hispanic 0.08 0.10 0.09 0.11 0.10 0.10 0.03 0.02
% Male 0.49 0.01 0.49 0.01 0.49 0.01 0.49 0.01
% Young Adults (ages 15-34) 0.27 0.05 0.28 0.05 0.27 0.05 0.27 0.05
% Middle-Aged Adults (ages 35-54) 0.28 0.03 0.28 0.03 0.27 0.03 0.28 0.02
% Older Adults (ages 55-64) 0.11 0.02 0.11 0.02 0.13 0.02 0.11 0.02
% Senior Adults (ages 65 and up) 0.14 0.04 0.13 0.04 0.15 0.03 0.14 0.03
Urbanization Rate 0.54 0.40 0.54 0.40 0.63 0.38 0.50 0.41
% Frequent Religious Service Attendees 0.49 0.19 0.49 0.20 0.38 0.14 0.55 0.17
% HS Diploma, No Bachelors 0.60 0.08 0.60 0.08 0.58 0.09 0.62 0.07
% Bachelors or More 0.25 0.10 0.25 0.10 0.31 0.10 0.22 0.09
State- & County-Level Socio-Political Controls
% Democratic Presidential Vote 0.46 0.12 0.46 0.12 0.53 0.14 0.43 0.11
Citizen Conservative State Measure 50.49 13.43 50.32 13.02 58.88 18.19 45.84 8.13
Government Conservative State Measure 44.52 15.11 44.43 14.73 52.22 18.51 39.99 12.12
County-Level Economic Controls
Unemployment Rate 6.19 2.54 6.14 2.66 6.09 1.68 6.51 2.46
% in Poverty 13.54 5.17 13.35 5.18 13.40 4.92 14.48 5.19
Median Household Income $47,355 $12,401 $46,596 $12,001 $57,224 $13,650 $44,374 $10,107
# of Counties 1,845 1,453 641 353
# of Observations 21,795 15,955 2,296 3,544
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Table 2.2: The Effect of a Same-Sex Marriage Legalization Announcement on the
LGBT Hate-Crime Rate

(1) (2) (3) (4) (5)
After Legalization Announcement -0.070* -0.103** -0.107** -0.113*** -0.111***

(0.036) (0.039) (0.039) (0.042) (0.039)
County-Level Demographic Controls No Yes Yes Yes Yes
State- & County-Level Socio-Political Controls No No Yes Yes Yes
County-Level Economic Controls No No No Yes Yes
Other LGBT Policy Controls No No No No Yes
R-Squared 0.004 0.006 0.006 0.006 0.007
Observations 21,795 17,527 17,527 17,522 17,522
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects.

Table 2.3: The Effect of a Same-Sex Marriage Legalization Announcement on the
LGBT Hate-Crime Rate by Crime Type

(1) (2)
Violent LGBT LGBT Property

Hate-Crime Rate Hate-Crime Rate
After Legalization Announcement -0.072** -0.039*

(0.034) (0.023)
R-Squared 0.008 0.004
Observations 17,522 17,522
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects. Regressions also include

county-level demographic controls, state- and county-level socio-political controls, county-

level economic controls, and other LGBT policy controls.
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Table 2.4: The Effect of a Same-Sex Marriage Legalization Announcement on the
Likelihood of an LGBT Hate-Crime Occurring

(1) (2) (3) (4) (5)
After Legalization Announcement -0.060** -0.057*** -0.058*** -0.057*** -0.056***

(0.022) (0.020) (0.020) (0.020) (0.019)
County-Level Demographic Controls No Yes Yes Yes Yes
State- & County-Level Socio-Political Controls No No Yes Yes Yes
County-Level Economic Controls No No No Yes Yes
Other LGBT Policy Controls No No No No Yes
R-Squared 0.006 0.008 0.008 0.009 0.009
Observations 21,795 17,527 17,527 17,522 17,522
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects. Regressions also include

county-level demographic controls, state- and county-level socio-political controls, county-

level economic controls, and other LGBT policy controls.

Table 2.5: The Effect of a Same-Sex Marriage Legalization Announcement on the
Likelihood of an LGBT Hate-Crime Occurring by Crime Type

(1) (2)
Any Violent LGBT Any LGBT Property

Hate-Crime Hate-Crime
After Legalization Announcement -0.053** -0.020

(0.020) (0.021)
R-Squared 0.008 0.006
Observations 17,522 17,522
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects. Regressions also include

county-level demographic controls, state- and county-level socio-political controls, county-

level economic controls, and other LGBT policy controls.
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Table 2.6: Robustness Checks

(1) (2) (3) (4) (5) (6)
Court-Order Only Urban-Only Non-Urban No Other

Pro-LGBT Laws
With Other

Pro-LGBT Laws
No County
Restrictions

After Legalization Announcement -0.144*** -0.054** -0.329 -0.165*** -0.106** -0.122***
(0.047) (0.023) (0.219) (0.056) (0.045) (0.038)

R-Squared 0.009 0.008 0.032 0.007 0.015 0.009
Observations 13,525 13,352 4,170 8,580 8,942 13,692
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects. Regressions also include county-level demographic controls, state- and

county-level socio-political controls, county-level economic controls, and other LGBT policy controls.
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Table 2.7: Falsification Tests: The Effect of a Same-Sex Marriage Legalization Announcement on Other Types of Crimes

(1) (2) (3) (4)
Race-Based Religious-Based Other Total

Hate-Crime Rate Hate-Crime Rate Hate-Crime Rate Crime Rate
After Legalization Announcement 0.039 -0.043 0.007 -78.605

(0.073) (0.046) (0.098) (130.133)
R-Squared 0.012 0.005 0.012 0.038
Observations 17,522 17,522 17,522 17,473
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects, county-level demographic controls, state- and county-level socio-political

controls, county-level economic controls, and other LGBT policy controls.
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Table 2.8: The Effect of Same-Sex Marriage Legalization on the LGBT Hate-Crime Rate In Areas With Likely Perpetrators: A
Heterogeneity Test.

(1) (2) (3)
LGBT Violent LGBT LGBT Property

Hate-Crime Rate Hate-Crime Rate Hate-Crime Rate
After Legalization Announcement -0.138*** -0.100** -0.038

(0.048) (0.039) (0.026)
× County Has a Large % of Young White Males & a High Citizen Conservative Measure -0.076 -0.061 -0.015

(0.046) (0.037) (0.033)
× County Has a Large % of Same-Sex Households 0.092** 0.093*** -0.001

(0.034) (0.033) (0.023)
Effect for Counties with a Large % of Young White Males & a High Citizen Conservative Measure -0.214** -0.161** -0.053
P-Value 0.001 0.008 0.251
R-Squared 0.007 0.008 0.004
Observations 17,473 17,473 17,473
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects, county-level demographic controls, state- and county-level socio-political

controls, county-level economic controls, and other LGBT policy controls.
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Table 2.9: The Effect of a Same-Sex Marriage Ban on the LGBT Hate-Crime Rate

(1) (2) (3) (4)
LGBT Violent LGBT LGBT Property

Hate-Crime Rate Hate-Crime Rate Hate-Crime Rate
After Ban 0.014 -0.005 0.019 -0.024

(0.048) (0.050) (0.029) (0.033)
× States Never Banned Before 2000 0.134 0.086 0.049

(0.120) (0.125) (0.048)
Effect for States w/ Ban Conditional on no Prior Ban 0.130 0.105 0.025
P-Value 0.243 0.412 0.425
R-Squared 0.007 0.007 0.008 0.004
Observations 17,527 17,522 17,522 17,522
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects. Regressions also include county-level demographic controls, state- and

county-level socio-political controls, county-level economic controls, and other LGBT policy controls.
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Figures

Figure 2.1: Hate-Crime Rates by Year, Type

Source: FBI’s Uniform Crime Reporting (UCR) Data Series

Figure 2.2: Number of States that Legalize Same-Sex Marriages by Time
Source: National Conference of State Legislatures, the Human Rights Campaign and
various news sources
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Figure 2.3: Average LGBT Hate-Crime Rate by Treatment Group and Year

Source: FBI’s Uniform Crime Reporting (UCR) Data Series

Figure 2.4: LGBT Hate-Crime per 100,000 People by Crime Type

Source: FBI’s Uniform Crime Reporting (UCR) Data Series
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(a) Effect on the Total LGBT Hate-Crime Rate (b) Effect on the Violent LGBT Hate-Crime
Rate

(c) Effect on the LGBT Property Hate-Crime
Rate

Figure 2.5: Event Study Estimates of the Effect of a Same-Sex Marriage Legalization
Announcement on LGBT Hate-Crime Rate

Note: The figure graphically depicts the effect of same-sex marriage legalization
announcements on LGBT hate-crime rates when the effect is allowed to vary by
time. Each panel is estimated from a different regression. Panel (a) estimates the
effect on total LGBT hate-crimes, panel (b) estimates the effect on violent LGBT
hate-crimes, and panel (c) estimates the effect on LGBT property hate-crime. The
periods are grouped into four quarter (1 year) bins relative to treatment. The year
prior to treatment is omitted, thus the other periods are relative to that year. The
solid line reports the estimate of the effect of being treated in that time relative to
treatment. The gray highlighted area represents the 90% confidence interval for the
estimation and the dotted lines represent the 95% confidence interval. Regressions
include quarter and county fixed effects, county-level demographic controls, state and
county level socio-political controls, county level economic controls, and other LGBT
policy controls.
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Chapter 3

Mile High: How Does Marijuana Legalization

Affect Air Travel?1

3.1 Introduction

As of November 2018, recreational marijuana is legal in ten states and is available

for purchase in six of those, becoming an important policy issue. The availability of

recreational marijuana could increase demand for travel to legalized states. Colorado,

the first state to legalize recreational marijuana, is also seeing record numbers of

tourists (Wenzel 2018) and there is public interest on how much this can be attributed

to marijuana. According to a Denver Post article Blevins 2016, two years after the

state opened its first dispensaries, 23% of passengers stated that marijuana availability

positively impacted their choice to vacation in Colorado.2 Survey evidence like this

has potential issues, such as incentives for those being interviewed to under report

interest in marijuana. Still, it is clear that tourism numbers have increased. Since 2009,

domestic visitors have increased by 41%, double the national growth rate of 20%. While

these increase in tourism coincide with the legalization of recreational marijuana, it is

unclear how much of its success in tourism can be attributed to marijuana legalization.

After all, 2017 marked the eighth consecutive year of record setting growth in tourism

in Colorado (Wenzel 2018). This trend began well before recreational marijuana

1Robert Pettis. To be submitted to Economics of Transportation.

2However,only 4% of tourists stated that they came in part for marijuana and actually visited a
dispensary.
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was legalized in Colorado. Understanding the effects of marijuana legalization on

tourism is important. The effects on tourism affect public finance and regional

economic development and are part of the cost-benefit analysis of any state considering

legislation.

In this paper, I study the overall effect of the legalization of recreational marijuana

on airline travel, making effort to distinguish tourism travel where possible. Specifically,

I estimate changes in the number of passengers as a result of legalization. Additionally,

unless supply is perfectly elastic, fares should increase as a result of a shift in demand

for air travel, thus I consider the effect of legalization on airline fares. To do this, I

use a difference-in-differences approach that exploits variation in the adoption of legal

recreational marijuana across states and time.

Difference-in-Differences estimation shows no effect of marijuana legalization on

the number of airline travelers. There is some evidence of a seasonal effect on the

average price of a ticket. Using a synthetic control approach, I find evidence of a

temporary drop in passenger traffic after legalization. Possible causes of the drop

could be passengers choosing to vacation in other states due to a negative reaction to

marijuana legalization or passengers delaying their trip until after dispensaries opened.

After dispensaries open, this negative effect reverses.

This paper contributes to the growing literature on the effects of legal marijuana on

consumer behavior, such as Cheng, Mayer, and Mayer 2018 who provide evidence that

demand for housing has increased in Colorado as a result of legalization. Additionally,

to my knowledge, there is little other literature that studies the effect of quickly

situated amenities that vary by state on airline travel. This is more limited when

studying recreational amenities, though there are some examples such as in Weiler

and Seidl 2004 which studies the effect of national park designation on tourism. There

have been studies that investigate travel for medical reasons, such as traveling to gain

access to safe and legal abortion (Sethna and Doull 2012 and Sethna et al. 2013). This
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paper fills in the gap by examining the effect of recreational marijuana legalization on

passenger air travel.

In the next section, I provide background on marijuana legalization in the United

States. In Section II, I describe my data. Section III outlines my main empirical

approach while Section IV describes the results. In Section and Section VI concludes.

3.2 Background on Marijuana Legalization

Marijuana’s legal status in the United States is complicated. It is criminalized

at the federal level, but at the state (or even municipal) level, the legal status of

marijuana can vary. In particular, a state can legalize marijuana for all purposes

including for recreation, marijuana could be decriminalized - prompting a fine but not

jail time, it could be legalized for medical use, or they could have no legal marijuana.

Even among states that legalize for medical use, the range of products legalized and

for whom can vary. Depending on the state, marijuana could be available in edible

or smokable forms (MMJ Recs 2016) and could be used recreationally. On the other

hand, they could allow only a limited number of marijuana derivatives for medical

use and could limit who can purchase to very specific illnesses. In the latter case, the

legality of the psychoactive cannabinoid in marijuana, tetrahydrocannabinol (THC)

also varies by state.

Municipalities within states that legalize recreational marijuana may ban the sale

of marijuana. However, a consumer could travel to a nearby legalized jurisdiction for

consumption. Thus, I focus on state level legal status as I consider travel to and from

these states. Figure 3.1 shows the composition of legal marijuana as of the end of

2017. Note the close geographical proximity of many of the states that have legalized

recreational marijuana at this time.

State-level recreational legalization began in late 2012 in Colorado where voters
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approved legalization at the ballot box.3 As of November 2018, nine states have

legalized marijuana and more votes are forthcoming. While later adopting states may

be able to learn about the process of adopting legal marijuana from early adopters,

the process appears to take a relatively similar time from legalization passing to

availability of marijuana through dispensaries. This gap consists of the time required

to set up appropriate agencies to oversee the production and sales of legal marijuana,

to review and distribute applications for licenses to produce and sell marijuana, and

for producers and sellers to legally generate enough product to begin sales. Figure

3.2 highlights this difference by graphing both the count of states that have legalized

marijuana and the count of states that have legalized marijuana and have access

through open dispensaries.

3.3 Data

To understand how marijuana legalization affects air travel, I draw from several

data sources: The Origin and Destinations survey for air travel data, dates of marijuana

legalization and date of availability of recreational marijuana. For synthetic control

models, I also control for natural amenities such as highest mountain in a state

and miles of coastline. In addition, some model specifications control for state-level

economic conditions by using gross state product (GSP) by year, linearly interpolated

for each quarter. In some specifications, I seasonally adjust the outcome variables such

that the adjustment varies by route but not year, where convenient.4 For example, in

a synthetic control model, not all pre-treatment periods are included, as is typical, so

it would be convenient to adjust for seasonality prior to model implementation.

3In fact, all such legalization was done through referendum within the scope of this study.
Vermont became the first state to legalize recreational marijuana through the state’s legislature in
2018.

4The process of seasonal adjustment is documented in Section B.1.
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3.3.1 Air Travel

I use the Origin and Destination Survey from the Bureau of Transportation Statis-

tics at the US Department of Transportation (US DOT 2005-2017). These data

represent a 10% sample of all flights, from the first quarter of 1995 to the fourth

quarter of 2017. For some analyses, I use only data from the first quarter of 2005

to the fourth quarter of 2017. This is because of availability of covariates and the

fact that unobserved latent variables may have caused a long term shift in passenger

traffic for treated states in 2004. Figure 3.3 provides an illustration of this change

in 2004. I generate airport to airport origin/destination pairs, a route, and their

associated passenger count and average fare. These data include information on each

leg of a full journey, including hubs. I specify a route using actual origin to final

destination pairs. Furthermore, I keep only itineraries that are round trips. There

are approximately 3.7 million observations of such trips in these data. If the travel to

and from the destination occur on opposite sides of a quarter changing date (such

as Jan 1st), the flights are automatically recorded as one way trips each way, and

thus will be dropped.5 In other words, a round trip must be completed within a

particular quarter in order to not be dropped. I also drop routes with few (under 10)

recorded passengers per quarter. A further limitation is that I do not have information

on when the ticket was purchased or if the passenger used a promotion to get a discount.

3.3.2 Recreational Marijuana Legalization

I collect dates for the passage of legislation or referenda on marijuana legalization,

and the date on which the first legal sale of marijuana took place. This is important

due to lag between the passage of a resolution and its implementation. The lag is,

5This means that I would not be able to record those traveling for New Years celebrations, a
holiday known for substance use.
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on average, almost 457 days (or 5 quarters). Figure 3.2 shows this discrepancy over

time and Table 3.1 details when and where this occurs. While cannabis businesses

may still be banned in some municipalities even in legalized states, I use state-level

legalization, rather than municipal-level rules because visitors in such an area may

travel to a nearby dispensaries even if marijuana is illegal in the municipality that

contains the destination airport ( Colorado Municipal League 2018, Misulonas 2017).

For dispensary openings, I rely on articles indicating the opening of the first dispensary

in a state.These data were collected through review of online news articles and, in

some cases, interviews with dispensary staff. For date of referenda, I accessed the

public record.

The states that have legalized (as of 12/31/2017) are shown in Figure 3.1. Note

that California did not open their first legal recreational dispensary until 1/1/2018,

and so will not be considered treated when considering the date of availability.The

dataset does not contain data on air travel to Alaska, thus policy variation will come

from west coast states. If air travel to these states change in terms of passenger count

at different rates than the rest of the country, this could violate the parallel trends

assumption that is necessary for validity of the difference-in-differences model.

3.3.3 Natural Amenities

Many of the states that have introduced legal marijuana have significant natural

amenities. I use the static variables of tallest point in the state and miles of coastline.

These do not vary over time and so would be differenced out of any difference-in-

differences estimator; however, they are useful in constructing a synthetic control of

treated states.

Summary statistics are reported in Tables 3.2 (using date of marijuana policy
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passage) and 3.3 (using date of marijuana availability).

3.4 Methods

3.4.1 Difference-in-Differences

To estimate the impact of recreational marijuana legalization on air travel, I employ

a difference-in-differences (DD) model. Using indicators for the treatment status of

the states on each end of a route (both origin and destination), I estimate the effect

of marijuana legalization on round trip routes to and from treated states. The model

is as follows:

Yr,p,t,q = α + δp + γt,q + ψr,p + κr,p,q + φ1Destr,p,t,q + φ2Originr,p,t,q

+ φ3(Dest×Origin)r,p,t,q + βXr,p,t,q + εr,p,q,t,

(3.1)

where: indexes are route (r), city-pair(p), quarter-year(t), and quarter(q); yr,p,t,q is

the outcome; δp, γt,q, ψr,p, κr,p,q are city pair, time, route, and quarter varying route

fixed effects; φ1, φ2, and φ3 are coefficients on treatment status of dest, origin states.

By differencing each city in a city-pair, thus comparing differences in the outcome

variables between routes in the same city pair, the model becomes:

y1,p,t,q − y2,p,t,q = ψ̃p + κ̃p,q + φ1(Dest1,p,t,q −Dest2,p,t,q)

+ β(X1,p,t,q −X2,p,t,q) + (ε1,p,q,t − ε2,p,q,t),
(3.2)

where ψ̃p=ψ1,p − ψ2,p and κ̃p,q = κ1,p,q − κ2,p,q. Notice that, through differencing, φ2

and φ3 are no longer estimated. φ2 is not estimated due to collinearity with φ1. This

is because, on a given city pair, the destination for a route is the origin for the other

route in the city pair. Thus, φ2 = −φ1. φ3 is omitted because, by definition, each city

in a given city pair for (Dest×Origin)r,p,t,q has the same treatment. Thus, all values

for the differenced variable are zero. This model allows the coefficient of interest, φ1,

to be interpreted as the difference between routes from untreated to treated states and

routes from treated to untreated states. If travel from on a route from a non-treated
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state to a treated state increases relative to that of a treated to non-treated route,

φ1 should be a positive. Outcomes I consider include the natural log of passengers

and the natural log of the average market fare.6 Specifications are separately run

considering the date of legislation/initiative and the date a dispensary first opened

(signifying the availability of legal marijuana). In some specifications, I allow the

treatment effect to vary based on the quarter of travel.

3.4.2 Event Study

In order to test the parallel trends assumption for the DD model, as well as to

see how the effect of treatment changes over time, I employ an event study similar to

that of Jacobson, LaLonde, and Sullivan 1993 and Kline 2011. Specifically, I estimate

the following:

y1,p,t,q − y2,p,t,q = ψ̃p + κ̃p,q +
−2∑

K=−k
δkDk,p,t,q +

k∑
K=0

δkDk,p,t,q

+ β(X1,p,t,q −X2,p,t,q) + (ε1,p,q,t − ε2,p,q,t),
(3.3)

where I include a vector of dummies, Dk,p,t,q, which are equal to (Destp,t,q −Destp,t,q)

only when treatment is exactly k periods away in city-pair p in quarter of the year q. I

omit the period prior to treatment such that results can be interpreted as being relative

to the period prior to treatment. Coefficients and their 95% confidence intervals are

reported graphically with the coefficient on the y-axis and time on the x-axis.

3.5 Results

3.5.1 Effects of Marijuana Legalization on Air Passenger Travel

Here, I report the difference-in-differences estimates of the effect of marijuana

legalization on the number of passengers on routes from non-treated states to treated

6Given a change in demand for tickets, the behavior of the supplier in terms of price and supply
of flights are important to investigate.
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states relative to routes from treated states to non-treated states. First, in Table

3.4, I present the results of several specifications of the effect of treatment on the

natural log of passengers, with the top panel using the date of treatment as the date

of passage and the bottom panel the date of availability.

Column 1 uses only time fixed effects, Column 2 adds city pair fixed effects, Column

3 adds GSP, and Column 4 allows the effect to vary by quarter. Estimates for the

effect range from a 1.3% to 1.8% increase in number of passengers in each case. I am

unable to reject the hypothesis that there is no effect, however. The fourth quarter is

least affected with a post-availability effect being zero to three digits.

Figure 3.4 presents the results from the event study model specified in Equation

3.3. The results show the pre-trends assumption is satisfied, providing validity to

these models. Additionally, post-treatment trends are not statistically different from

zero.

The estimated effects prior to treatment do not statistically differ from zero in any

case, suggesting that the parallel trends assumption could be satisfied. Similarly, the

estimated effects post treatment do not statistically differ from zero. Moreover, the

estimates appear to be centered around zero.

3.5.2 Effects of Marijuana Legalization on Average Market Fare

In Table 3.5 I report the difference-in-differences estimates of the effect of marijuana

legalization on fares for routes from non-treated states to treated states relative to

routes from treated states to non-treated states. Column 1 uses only time fixed effects,

Column 2 adds city pair fixed effects, Column 3 adds GSP, and Column 4 allows the

effect to vary by quarter. While I cannot reject the hypothesis that there is no effect,

the signs are mostly negative. The exception to the negative sign comes when I allow

the effect to vary by quarter, specifically in the fourth quarter of the year. Note that

this is the same period that the size of the effect on passengers is smallest. While
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Colorado gets large numbers of tourism year-round, families tend to visit more in the

summer. This demographic is less likely to participate in marijuana consumption.

Other tourists, specifically those that may wish to travel for marijuana, would be

relatively more likely to travel during winter. Therefore, a plausible explanation is

that the airlines anticipated the increase in demand and adjusted the price while not

increasing supply to adjust for seasonal capacity constraints.7

Figure 3.5 illustrates the coefficients from the event study model on average fares

over time relative to legalization as in the prior analysis. There is no evidence of pre-

trends using either the date of policy passage or the date of availability. Additionally,

as with passengers, post-treatment effects are not statistically different from zero.

In summary, there does not appear to be an effect different from zero of marijuana

legalization on number of passengers or average fares from non-treated to treated

states in excess of that from non-treated to treated states.

3.6 Synthetic Control

3.6.1 Model

The synthetic control method (SCM) developed in Abadie and Gardeazabal 2003,

Abadie, Diamond, and Hainmueller 2010, and Abadie, Diamond, and Hainmueller 2015

creates a synthetic version of a treated state through the weighted average of control

(donor) states. In addition to relaxing the assumptions of the difference-in-differences

model, SCM allows for the weighting of states that provide for a more appropriate

match than does the DD model. Additionally, if its assumptions are not violated,

it allows for a visual estimation of the counterfactual. Observations that involve an

7There is currently a pilot shortage (Wall and Tangel 2018). As flight crews generally live on one
end of a route, it would require some shifting of human resources that are in short supply. In at least
some cases, this would seem to be the restraint, as in an interview with the a media spokesperson at
the Denver Airport, a key airport in this study, I was told that overall there would not be a capacity
problem if an airline decided to add more flights. More interviews with airports forthcoming.
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origin or destination to or from treated states other than one treated unit of interest

are dropped from the model. Outcome variables have been seasonally adjusted.

To estimate a causal effect through the synthetic control method, the first step is

to estimate the vector of weights (w) to be given to each state to minimize the mean

squared prediction error in the pre-treatment period:

ŵ1 = argminφ1

T0∑
t=1

(Y1t −
N∑
j=2

φ1
jYjt)2 (3.4)

s.t. ŵ1
j ≥ 0 for all 2 ≤ j ≤ N and

N∑
j=2

ŵ1
j = 1,

where the superscript on the weight indexes the state on which state j (the subscript) is

a synthetic control for, with the convention being that 1 indexes the treated state. T0

is the period prior to treatment, from which I estimate the causal effect of legalization:

α̂1t = Y1t −
N∑
j=2

ŵ1
jYjt (3.5)

The parameter α̂it is the estimate of the effect of treatment in state i in quarter-year

t. In periods t < T0, the estimates can be used as a measure of pre-treatment fit, and

during periods t > T0, the estimates can be interpreted as causal effects.

To compare among similar states to those treated, I use a standard synthetic

control using only one state, in this case Colorado.8 All routes with an origin or

destination in a state that becomes treated are removed from the donor pool. There

are two main assumptions for the synthetic control method. First, the control state

must remain within the convex hull of the donor pool states. Figure 3.6 graphs

Colorado vs the min and max values of the outcome variable, seasonally adjusted

passengers.9 At least in terms of the outcome variable, it is possible that a weighted

combination of donor states could approximate Colorado.

8Synthetic Controls for other treated states are forthcoming

9For an explanation of my method for seasonal adjustment, see Appendix B.1.
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The second assumption is perfection of the synthetic control. In other words, the

synthetic control produced should perfectly match the outcome for Colorado. While

this assumption rarely actually holds in practice, an inspection of the pre-treatment

match may provide some insight into the appropriateness of the synthetic control.

3.6.2 Results

Figure 3.7 graphs Colorado’s seasonally adjusted passenger count against the

synthetic Colorado in the first panel. The second panel plots the gap between

Colorado and synthetic-Colorado. There is one period in particular where the model

has large gaps starting around 2005. This suggests that the model is subject to

transitory shocks. I investigate a possible source of this shock and whether it could

be affecting the post-treatment outcome. Snowfall is very important to tourist travel

to Colorado, due to its natural amenities: Colorado supports the largest ski industry

in the United States Burakowski and Magnusson 2012. I use snowfall data National

Weather Service 2018 to illustrate a three year moving average of the disparity between

snowfall and its overall average in Figure 3.8. The 2005 gap between Colorado and

synthetic Colorado corresponds to the lowest point in the three year moving average

of snowfall discrepancy, which could explain the reduction in passengers. There is not

a similar snowfall disparity post treatment. While this does not mean that Colorado

could have been subject to some other type of shock during the post-treatment period,

it does suggest that it is not related to snowfall.10

There are some possible explanations for the gap. Passengers, once made aware

10I also studied if wildfires could have deterred visitors, as this has been a problem in recent
years in western states. Figure B.2 illustrates wildfires in Colorado over time. While there does
appear to be a relatively moderate spike in wildfires during the post-passage dip, the acreage on
fire decreases as the dip decreases, suggesting that it is not wildfires deterring visitors. There is
otherwise no correlation with the treatment gap, despite there being years with much higher wildfire
acreage. Additionally, the largest of these fires occurred hours away from the larger cities in Colorado
(Gabbert 2018). The other, smaller fires around this time were in small towns and should not have
affected tourism(Handy 2014 and Moylan 2015).
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of the legal change, prior to availability, could adjust their behavior based on their

preferences. A pro-marijuana traveler may wish to put off a vacation until legalization.

An anti-marijuana traveler may have been discouraged from entering the state or

conventions may have been canceled as a result of the legislation. As marijuana

legalization becomes a new norm, over time the anti-marijuana traveler may return to

traveling to treated states.

The gap between the curves, (α), is shown in Figure 3.9 with placebos generated

by performing the synthetic control on non-treated states. Associated pseudo p-values

(effect divided by its pre-treatment root mean squared predicted error (RMSPE)

as in Galiani and Quistorff 2016) are reported in the second panel. This means

that there is a statistically significant reduction in airline traffic to Colorado for the

majority of the time post-passage and pre-availability. In particular, Colorado is

more than 200,000 passengers less than its synthetic control in the first periods after

treatment.11 Once dispensaries open, the statistical significance goes away. In the

survey mentioned earlier, Blevins 2016, there were some respondents that answered

that the marijuana legalization negatively impacted their choice to fly to Denver (but

they went anyway). Obviously, travelers who chose not to travel because of recently

legalize recreational marijuana are not in the dataset. This period after policy passage

and before availability could represent this as well as the passengers that want to

travel to Colorado but want to wait for the availability of marijuana. This is suggestive

of a change in passenger composition.

I also estimate a synthetic control model on fares. Figure 3.10 illustrates the

average fares of going to Colorado from non-treated states over time. While Colorado

does not have the min or max value of fares at any point, it does approach both. This

introduces difficulty in finding a match as there would be few states, if any, that are

11Remember that these figures are a 10% random sample of airline traffic. I multiply my estimates
by 10 to get a representative estimate of the population
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some of the more expensive flights in the early 2000s and are some of the cheapest

flights more recently. Indeed, Figure 3.11a (with gap plotted in Figure 3.11b) shows

a sizable difference between the fares of traveling to Colorado and to the synthetic

control be pre and post treatment. The poor pre-treatment fit appears to violate the

perfection assumption of SCM, meaning the model is subject to transitory shocks. In

Figure 3.12, I report the p-values for each period after treatment. Despite one of the

larger post-treatment root mean squared errors, there is no statistical significance.

This is, in part, due to the poor pre-treatment fit.

3.7 Alternative Models

In this section, I address two potential causes of the null results in Section 3.5:

substitution to driving, and low arrest rates for marijuana use in untreated states. For

the latter, potential users would have a low transaction cost of consuming marijuana

in-state, making travel for consumption unnecessary. For brevity, I only report event

study models in this section. Regression tables for these alternate models can be

found in Appendix B

3.7.1 Travel Distance

First, I weight by the average number of miles flown from an origin to destination.12

This is an effort to account for driving. Vacationers have a higher elasticity of demand

than do business travelers. Additionally, long distance travelers are more likely

vacation travelers, rather than business travelers. Therefore, flights with a shorter

distance, more likely business passengers, will receive a lesser weight.

Figure 3.13 report results from the distance weighted event studies using date of

policy passage and availability respectively. These results are similar to the baseline

12The average number of miles flown varies by quarter. This is due to varying intermediate legs
of a given origin/destination pair.
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model in shape and lack of significance both in the pre and post treatment periods.

However, this model has noticeably smaller standard errors across the board, providing

further evidence that there is no effect of marijuana legalization on passengers.

I repeat the analysis for fares in Figure 3.14. As before, there are no statistically

significant effects, pre or post treatment. This provides further evidence that fares are

also not affected by the availability of marijuana.

3.7.2 Arrest Rates

To capture the fact that states that do not have a high arrest rate may not be as

incentivized to travel due to the low transaction cost of consuming at home, I weight

each state by their 2012 (the year that legalization began) drug arrest rate. Figure

3.15 reports the event studies. As before, there are no significant values, pre or post

treatment. Figure 3.15b, however, gives the best argument yet for an increase. The

pre-trends are very close to zero and there is an immediate and constant increase after

marijuana availability, though it is not statistically significant.

3.8 Conclusion

In this paper, I analyze the effects of marijuana legalization on airline passenger

travel and fares. Using a difference-in-differences model, I find no effect of marijuana

legalization on either air passenger travel or average fares. Through the synthetic

control method, I also find no evidence of an increase. In fact, there is some evidence

of a temporary decrease in passengers.

There are some limitations to my estimates. Synthetic Control estimates of the

effect of recreational marijuana legalization on passengers is limited in that the point

estimates are trending upward and may be statistically significant for post-2017 years.

Synthetic Control estimates for fares are, in part, not statistically significant due to

large transitory shocks in the pre-period which get the outcome for Colorado close
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to failing the convex hull assumption. A logical next step is to apply the Imperfect

Synthetic Control Method, developed in Powell 2017, which instead requires that

Colorado be given positive weight in the synthetic control for another state; however,

this may prove difficult as well, as the fares for Colorado get close to both the minimum

and maximum for all fares at various points. A further limitation is that my outcome

is the difference between traffic going from a non-treated state to a treated state.

The effect on passenger traffic is a total effect, not a direct effect, that is, marijuana

legalization could improve GSP and thus indirectly increase passenger traffic in both

directions. If the effect of marijuana significantly increases income in a treated state,

treated state residents may be able to take more vacations out of state which will

decrease the effect I see from the differences.

Despite the narrative that marijuana tourism is a force to be reckoned with, I find

no evidence to support the claim by air travel. While governments and constituents

hoping to swell their coffers may be able to do with a tax, the tax may be paid more by

locals than previously thought. Additionally, as the marijuana legalization movement

continues, there will be more options for marijuana tourism. If early adopters were

not able to see an effect, it is less likely that later adopters would.
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Tables

Table 3.1: List of States with Legal Recreational Marijuana

State Date Passed Date Available
Alaska 11/4/2014 10/29/2016
California 11/8/2016 1/1/2018
Colorado 11/6/2012 1/1/2014
Maine 11/8/2016
Massachusetts 11/8/2016
Michigan 11/6/2018
Nevada 11/8/2016 7/1/2017
Oregon 11/4/2014 10/1/2015
Vermont 1/4/2018
Washington 11/6/2012 7/8/2014

Table 3.2: Summary Statistics, Treatment Date is Date of Policy Passage

Non-treated
to Non-Treated

Non-Treated
to Treated

Treated
to Non-Treated

Treated
to Treated

Passengers (Count) 204.66 261.61 261.58 654.99
(813.1) (1023.1) (1022.8) (1936.8)

Market Fare ($) 247.63 291.33 291.74 238.94
(117.0) (90.96) (90.67) (100.3)

GDP ($ Millions) 605,563.38 824,497.55 674,715.56 1,088,279.96
(594062.7) (974328.9) (672710.2) (1113599.2)

N 1,949,508 63,024 63,028 9,105

Table 3.3: Summary Statistics, Treatment Date is Date of Availability

Non-treated
to Non-Treated

Non-Treated
to Treated

Treated
to Non-Treated

Treated
to Treated

Passengers (Count) 207.51 279.14 279.47 369.30
(824.4) (1105.9) (1106.3) (1303.3)

Market Fare ($) 248.90 290.11 290.68 230.44
(116.4) (94.17) (94.23) (93.44)

GDP ($ Millions) 618,335.60 348,414.55 788,851.32 358,607.68
(616846.7) (92373.5) (813557.2) (107154.7)

N 2,013,274 34,488 34,445 2,458
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Table 3.4: Effect of Recreational Marijuana Legalization on ln(Passengers)
Using Policy Passage Date as Treated Date

(1) (2) (3) (4)
Effect (Passage Date) 0.018 0.018 0.018

(0.047) (0.047) (0.049)
Effect - Quarter 1 0.017

(0.049)
Effect - Quarter 2 0.016

(0.057)
Effect - Quarter 3 0.030

(0.056)
Effect - Quarter 4 0.012

(0.054)
R2 0.000 0.000 0.000
Effect (Avail. Date) 0.013 0.013 0.013

(0.074) (0.074) (0.074)
Effect - Quarter 1 0.002

(0.073)
Effect - Quarter 2 0.017

(0.090)
Effect - Quarter 3 0.035

(0.079)
Effect - Quarter 4 -0.000

(0.083)
Observations 747263 747263 747263 747263
R2 0.000 0.000 0.000
GDP X X
City Pair FEs X X X
Standard errors in parentheses
Standard Errors are clustered at the city-pair level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.5: Effect of Recreational Marijuana Legalization on ln(Fares)
Using Policy Passage Date as Treated Date

(1) (2) (3) (4)
Effect (Passage Date) -0.080 -0.047 -0.020

(0.072) (0.074) (0.075)
Effect - Quarter 1 -0.036

(0.145)
Effect - Quarter 2 -0.173

(0.144)
Effect - Quarter 3 -0.124

(0.148)
Effect - Quarter 4 0.170

(0.103)
R2 0.000 0.000 0.000
Effect (Avail. Date) -0.063 -0.038 -0.069

(0.103) (0.106) (0.107)
Effect - Quarter 1 -0.050

(0.197)
Effect - Quarter 2 -0.101

(0.209)
Effect - Quarter 3 -0.243

(0.199)
Effect - Quarter 4 0.105

(0.147)
Observations 747263 747263 747263 747263
R2 0.000 0.000 0.000
GDP X X
City Pair FEs X X X
Standard errors in parentheses
Standard Errors are clustered at the city-pair level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figures

Figure 3.1: Legal Status of Marijuana Across States
Note: Figure B.1 lists the date of legalization for all states, as of 2018.
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Figure 3.2: Legality of and Access to Recreational Marijuana Over Time
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Figure 3.3: Comparison of Colorado and average of non-treated U.S. states, indexed
such that each graph starts at zero.
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(a) Date of Policy Passage

(b) Date of Availability

Figure 3.4: Effects of Recreational Marijuana Legalization on ln(Passengers)
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(a) Uses Date of Policy Passage

(b) Uses Date of Availability

Figure 3.5: Effects of Recreational Marijuana Legalization on ln(Average Market Fare)
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Figure 3.6: Seasonally adjusted passengers in Colorado as well as the max and min
values for donor pool states
y-axis is on a logarithmic scale.
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(a) Colorado vs Synthetic Colorado

(b) Colorado vs. Synthetic Colorado
Gap

Figure 3.7: Effects of Recreational Marijuana Legalization on Passengers
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Figure 3.8: Three-Year Moving Average of Snowfall Disparity from Overall Mean
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(a) Placebo Tests
This figure graphs the gap between actual and synthetic states. The dark
black line represents Colorado. Grey lines represent the analysis run on all
donor states. The dotted line represents treatment.

(b) Colorado vs. Synthetic Colorado pseudo p-values

Figure 3.9: Colorado vs. Synthetic Colorado pseudo p-values, Passengers
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Figure 3.10: Seasonally adjusted fares in Colorado as well as the max and min values
for donor pool states
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(a) Colorado vs Synthetic Colorado

(b) Colorado vs. Synthetic Colorado Gap

Figure 3.11: Effects of Recreational Marijuana Legalization on Average Market Fare
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(a) Placebo Tests
Bold represents treated state.

(b) Colorado vs. Synthetic Colorado pseudo
p-values

Figure 3.12: Colorado vs. Synthetic Colorado pseudo p-values, Fares
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(a) Uses Date of Policy Passage

(b) Uses Date of Availability

Figure 3.13: Effect of Recreational Marijuana Legalization on Passengers, Weighted
by Distance
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(a) Uses Date of Policy Passage

(b) Uses Date of Availability

Figure 3.14: Effect of Marijuana Legalization on Average Market Fare, Weighted by
Distance
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(a) Uses Date of Policy Passage

(b) Uses Date of Availability

Figure 3.15: Effect of Recreational Marijuana Legalization on Passengers, Weighted
by Arrest Rate
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Appendix A

Same-Sex Marriage
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Table A.1: Same-Sex Marriage Legalization and Ban Dates

State Initial passage Enactment Implementation Type Ban Date
Alabama 01/23/2015 02/09/2015 Court Order 06/06/2006
Alaska 10/12/2014 10/17/2014 Court Order 11/03/1998
Arizona 10/17/2014 10/17/2014 Court Order 11/04/2008
Arkansas 05/09/2014 06/26/2015 Court Order 11/02/2004
California 09/06/2005 06/26/2013 Court Order 11/04/2008
Colorado 07/09/2014 10/07/2014 Court Order 11/07/2006
Connecticut 10/10/2008 11/12/2008 Court Order
Delaware 05/07/2013 07/01/2013 Legislation
District of Columbia 12/15/2009 03/09/2010 Legislation
Florida 08/21/2014 01/06/2015 Court Order 11/04/2008
Georgia 06/26/2015 06/26/2015 Court Order 11/02/2004
Hawaii 11/13/2013 12/02/2013 Legislation 09/10/1996
Idaho 05/13/2014 10/15/2014 Court Order 02/06/2006
Illinois 11/20/2013 06/01/2014 Legislation 06/01/1997
Indiana 06/25/2014 10/06/2014 Court Order 06/07/2001
Iowa 04/03/2009 04/27/2009 Court Order
Kansas 11/04/2014 06/26/2015 Court Order 04/05/2005
Kentucky 02/12/2014 06/26/2015 Court Order 11/01/2004
Louisiana 06/26/2015 06/26/2015 Court Order 09/18/2004
Maine 05/06/2009 11/06/2012 Voter
Maryland 02/23/2012 01/01/2013 Legislation 01/01/1973
Massachusetts 05/17/2004 05/17/2004 Court Order
Michigan 03/21/2014 06/26/2015 Court Order 11/02/2004
Minnesota 05/14/2013 08/01/2013 Legislation
Mississippi 06/26/2015 06/26/2015 Court Order 11/02/2004
Missouri 06/26/2015 06/26/2015 Court Order 08/03/2004
Montana 11/19/2014 11/19/2014 Court Order 11/01/2004
Nebraska 03/02/2015 06/26/2015 Court Order 11/02/2000
Nevada 10/07/2014 10/9/2014 Court Order 11/02/2002
New Hampshire 05/06/2009 01/01/2010 Legislation
New Jersey 09/27/2013 10/21/2013 Court Order
New Mexico 12/19/2013 12/19/2013 Court Order
New York 06/24/2011 06/24/2011 Legislation
North Carolina 07/28/2014 10/10/2014 Court Order 05/08/2012
North Dakota 06/26/2015 06/26/2015 Court Order 11/02/2004
Ohio 06/26/2015 06/26/2015 Court Order 11/02/2004
Oklahoma 01/14/2014 10/06/2014 Court Order 11/02/2004
Oregon 05/19/2014 05/19/2014 Court Order 11/02/2004
Pennsylvania 05/20/2014 05/20/2014 Court Order
Rhode Island 05/02/2013 08/01/2013 Legislation
South Carolina 07/28/2014 11/20/2014 Court Order 11/07/2006
South Dakota 01/12/2015 06/26/2015 Court Order 11/01/2006
Tennessee 06/26/2015 06/26/2015 Court Order 11/07/2006
Texas 02/26/2014 06/26/2015 Court Order 11/05/2005
Utah 12/20/2013 10/06/2014 Court Order 11/01/2004
Vermont 04/07/2009 09/01/2009 Legislation
Virginia 02/13/2014 10/06/2014 Court Order 11/07/2006
Washington 02/08/2012 02/13/2012 Legislation
West Virginia 07/28/2014 10/09/2014 Court Order
Wisconsin 06/06/2014 10/06/2014 Court Order 11/07/2006
Wyoming 10/17/2014 10/21/2014 Court Order 05/30/2004
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Table A.2: The Effect of a Same-Sex Marriage Legalization Announcement on the LGBT Hate-Crimes, Alternative Models

(1) (2) (3) (4)
LGBT Hate-Crime Rate Any LGBT Hate-Crime

Poisson Model Negative Binomial Model Logit Model Probit Model
After Legalization Announcement -0.286 -0.300*** -0.067*** -0.068***

(0.000) (0.099) (0.022) (0.022)
Observations 17,527 17,527 15,051 15,051
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects. Regressions also include county-level demographic controls, state- and

county-level socio-political controls, county-level economic controls, and other LGBT policy controls.
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Table A.3: The Effect of a Same-Sex Marriage Legalization Announcement on the
LGBT Hate-Crime Rate with State Trends

(1) (2) (3)
LGBT Violent LGBT LGBT Property

Hate-Crime Rate Hate-Crime Rate Hate-Crime Rate
After Legalization Announcement -0.074* -0.046 -0.029

(0.037) (0.030) (0.024)
County-Level Demographic Controls Yes Yes Yes
State- & County-Level Socio-Political Controls Yes Yes Yes
County Level Economic Controls Yes Yes Yes
Other LGBT Policy Controls Yes Yes Yes
R-Squared 0.010 0.012 0.006
Observations 17,522 17,522 17,522
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects, state year trends, county-

level demographic controls, state- and county-level socio-political controls, county-level

economic controls, and other LGBT policy controls.
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Table A.4: The Effect of a Same-Sex Marriage Legalization Enactment on the LGBT
Hate-Crime Rate

(1) (2) (3)
LGBT Violent LGBT LGBT Property

Hate-Crime Rate Hate-Crime Rate Hate-Crime Rate
After Legalization
Announcement

-0.070
(0.044)

-0.040
(0.032)

-0.030
(0.023)

R-Squared 0.007 0.008 0.004
Observations 17,522 17,522 17,522
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects, county-level demographic

controls, state- and county-level socio-political controls, county-level economic controls,

and other LGBT policy controls.
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Table A.5: The Effect of Same-Sex Marriage Legalization on the Likelihood of an LGBT Hate-Crime Occurring In Areas With
Likely Perpetrators: A Heterogeneity Test.

(1) (2) (3)
Any LGBT Any Violent LGBT Any LGBT Property
Hate-Crime Hate-Crime Hate-Crime

After Legalization Announcement -0.066*** -0.064*** -0.015
(0.020) (0.020) (0.022)

× County Has a Large % of Young White Males & a High Citizen Conservative Measure -0.089** -0.073* -0.032
(0.038) (0.036) (0.025)

× County Has a Large % of Same-Sex Households 0.046 0.046 -0.008
(0.029) (0.031) (0.022)

Effect for Counties with a Large % of Young White Males & a High Citizen Conservative Measure -0.155** -0.137** -0.047
P-Value 0.001 0.002 0.210
R-Squared 0.010 0.009 0.006
Observations 17,473 17,473 17,473
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects, county-level demographic controls, state- and county-level socio-political

controls, county-level crime & economic controls, and other LGBT policy controls.

103



www.manaraa.com

Table A.6: The Effect of a Same-Sex Marriage Ban on the Likelihood of an LGBT Hate-Crime Occurring

(1) (2) (3) (4)
Any LGBT Any Violent LGBT Any LGBT Property
Hate-Crime Hate-Crime Hate-Crime

After Ban 0.013 -0.000 0.009 -0.006
(0.022) (0.021) (0.019) (0.011)

× States Never Banned Before 2000 0.085* 0.076 0.019
(0.050) (0.052) (0.021)

Effect for States w/ Ban Conditional on no Prior Ban 0.084* 0.085* 0.013
P-Value 0.069 0.094 0.519
R-Squared 0.009 0.009 0.008 0.006
Observations 17,522 17,522 17,522 17,522
Standard errors in parentheses.
Standard errors are robust and clustered at the state level.
OLS estimates.
* p<0.10, ** p<0.05, *** p<0.01

Note: Regressions include quarter and county fixed effects. Regressions also include county-level demographic controls, state- and

county-level socio-political controls, county-level economic controls, and other LGBT policy controls.
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Table A.7: Summary Statistics for Reporter and Never-Reporter Counties

Reporters Never-Reporters

Mean Standard Mean Standard
Deviation Deviation

Outcomes
LGBT Hate-Crime per 100,000 0.37 1.45 . .
Violent LGBT Hate-Crime per 100,000 0.25 1.14 . .
Property LGBT Hate-Crime per 100,000 0.12 0.90 . .
Any LGBT Hate-Crime 0.30 0.46 . .
Any Violent LGBT Hate-Crime 0.23 0.42 . .
Any Property LGBT Hate-Crime 0.11 0.32 . .
County-Level Demographic Controls
% of Households Same-Sex 0.01 0.02 0.00 0.01
Total Population 310,804 464,349 48,493 116,044
% Black 0.10 0.12 0.09 0.15
% Hispanic 0.08 0.10 0.07 0.13
% Male 0.49 0.01 0.50 0.02
% Young Adults (ages 15-34) 0.27 0.05 0.25 0.04
% Middle-Aged Adults (ages 35-54) 0.28 0.03 0.28 0.03
% Older Adults (ages 55-64) 0.11 0.02 0.12 0.02
% Senior Adults (ages 65 and up) 0.14 0.04 0.16 0.04
Urbanization Rate 0.54 0.40 0.11 0.27
% Frequent Religious Service Attendees 0.49 0.19 0.51 0.20
% HS Diploma, No Bachelors 0.60 0.08 0.64 0.07
% Bachelors or More 0.25 0.10 0.17 0.07
State- & County-Level Socio-Political Controls
% Democratic Presidential Vote 0.46 0.12 0.39 0.13
Citizen Conservative State Measure 50.49 13.43 45.79 11.61
Government Conservative State Measure 44.52 15.11 41.83 14.65
County-Level Economic Controls
Unemployment Rate 6.19 2.54 6.41 2.73
% in Poverty 13.54 5.17 15.83 6.43
Median Household Income $47,355 $12,401 $40,103 $10,394
# of Counties 1,845 2,793
# of Observations 21,795 152,239
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Appendix B

Marijuana Legalization

Table B.1: Passage Dates For Various Types of Legalization of Marijuana (Pass Dates)
State Recreational Medical Partial
Alabama 4/1/2014
Alaska 11/4/2014
Arizona 11/2/2010
Arkansas 11/8/2016
California 11/8/2016
Colorado 11/6/2012 11/7/2000
Connecticut 5/5/2012 6/7/2011
Delaware 5/13/2011
Florida 11/8/2016 3/20/2014
Georgia 2/14/1980 4/16/2015
Hawaii 6/15/2000
Illinois 8/2/2013
Indiana 4/26/2017
Iowa 1/9/2015
Louisiana 6/30/2015
Maine 11/8/2016 11/3/2009
Maryland 5/2/2013
Massachusetts 11/8/2016 11/6/2012
Michigan 11/4/2008
Minnesota 5/29/2014
Mississippi 7/1/2014
Missouri 7/14/2014
Nevada 11/8/2016 11/7/2000
New Hampshire 7/23/2013
New Jersey 1/18/2010
New Mexico 4/2/2007
New York 7/4/2014
North Carolina 7/17/2015
North Dakota 11/8/2016
Ohio 6/6/2016
Oklahoma 4/30/2015
Oregon 11/4/2014 7/8/2013 11/3/1998
Pennsylvania 4/17/2016
Rhode Island 6/16/2009
South Carolina 6/2/2014
Tennessee 5/4/2015
Texas 6/1/2015
Utah 3/25/2014
Vermont 1/4/2018 5/19/2004
Virginia 4/16/2017
Washington 11/6/2012
West Virginia 4/19/2017
Wisconsin 4/17/2017
Washington D.C. 12/14/2009

I only include laws that were effective at expanding marijuana access. For example, Kentucky is not listed here
because, although the state passed a law in 2014 legalizing CBD oil, the law did not include legalization to grow or
sell marijuana, thus the law had no practical effect Cheves 2015 Partial is a catch all for limited legalization. For
example, legalization of CBD oil that can only treat certain conditions would fall under this category. If there was a
change to these laws that made them effective whereas before they had not been, the most recent date is reported.
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Alternate Model Regression Tables

Here I report regression tables analogous to those presented as event studies in

Section 3.7. Tables B.2 and B.3 report the results of applying this weighting to

Equation 3.2 for passengers and fares, respectively. Despite putting emphasis on

longer flights, I see no substantial change to prior results from the baseline model.

Tables B.4 and B.5 repeat this process weighting by arrest rates. As before, there is

no substantial change to the estimated effects.
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Table B.2: Effect of Recreational Marijuana Legalization on ln(Passengers)
Using Availability Date as Treated Date. Weighted by distance.

(1) (2) (3)
Effect (Avail. Date) 0.010 0.007

(0.034) (0.033)
Effect - Quarter 1 0.011

(0.037)
Effect - Quarter 2 -0.007

(0.043)
Effect - Quarter 3 0.022

(0.042)
Effect - Quarter 4 0.002

(0.038)
R2 0.000 0.000 0.000
Effect (Passage Date) 0.005 0.009

(0.022) (0.023)
Effect - Quarter 1 0.019

(0.025)
Effect - Quarter 2 -0.002

(0.028)
Effect - Quarter 3 0.013

(0.031)
Effect - Quarter 4 0.006

(0.026)
Observations 747263 747263 747263
R2 0.000 0.000 0.000
GDP X X
City Pair FEs X X X
Standard errors in parentheses
Standard Errors are clustered at the city-pair level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.3: Effect of Recreational Marijuana Legalization on ln(Fares)
Using Policy Passage Date as Treated Date. distance.

(1) (2) (3)
Effect (Passage Date) 0.009 0.038

(0.082) (0.085)
Effect - Quarter 1 -0.036

(0.175)
Effect - Quarter 2 -0.104

(0.163)
Effect - Quarter 3 0.011

(0.161)
Effect - Quarter 4 0.204∗

(0.122)
R2 0.000 0.000 0.000
Effect (Avail. Date) 0.040 0.022

(0.121) (0.121)
Effect - Quarter 1 -0.025

(0.254)
Effect - Quarter 2 -0.023

(0.250)
Effect - Quarter 3 -0.033

(0.213)
Effect - Quarter 4 0.141

(0.169)
Observations 747263 747263 747263
R2 0.000 0.000 0.000
GDP X X
City Pair FEs X X X
Standard errors in parentheses
Standard Errors are clustered at the city-pair level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.4: Effect of Recreational Marijuana Legalization on ln(Passengers)
Using Policy Passage Date as Treated Date, Weighted by Arrest Rate.

(1) (2) (3)
Effect (Passage Date) -0.024 -0.016

(0.072) (0.073)
Effect - Quarter 1 -0.037

(0.071)
Effect - Quarter 2 -0.017

(0.083)
Effect - Quarter 3 0.019

(0.082)
Effect - Quarter 4 -0.025

(0.080)
R2 0.000 0.000 0.000
Effect (Avail. Date) 0.039 0.024

(0.105) (0.106)
Effect - Quarter 1 -0.004

(0.101)
Effect - Quarter 2 0.042

(0.125)
Effect - Quarter 3 0.060

(0.111)
Effect - Quarter 4 -0.000

(0.118)
Observations 473404 473404 473404
R2 0.000 0.000 0.000
GDP X X
City Pair FEs X X X
Standard errors in parentheses
Standard Errors are clustered at the city-pair level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.5: Effect of Recreational Marijuana Legalization on ln(Fares)
Using Policy Passage Date as Treated Date, Weighted by Arrest Rate.

(1) (2) (3)
Effect (Passage Date) -0.085 -0.064

(0.093) (0.093)
Effect - Quarter 1 -0.035

(0.174)
Effect - Quarter 2 -0.195

(0.184)
Effect - Quarter 3 -0.197

(0.189)
Effect - Quarter 4 0.106

(0.121)
Observations 473404 473404 473404
R2 0.000 0.000 0.000
Effect (Avail. Date) -0.020 -0.059

(0.127) (0.127)
Effect - Quarter 1 -0.010

(0.214)
Effect - Quarter 2 -0.006

(0.245)
Effect - Quarter 3 -0.283

(0.245)
Effect - Quarter 4 0.065

(0.172)
R2 0.000 0.000 0.000
GDP X X
City Pair FEs X X X
Standard errors in parentheses
Standard Errors are clustered at the city-pair level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Passenger counts and average fares are seasonally adjusted for the synthetic control

model. The procedure I used is as follows:

ỹr,t,q =
(

∑
t yr,t,q
T

)

(
∑
q

∑
t yr,t,q

4T )
(B.1)

This allows the seasonal adjustment to vary by route but not by year, thus increases

in seasonal traffic would not be differenced out. The effect of this seasonal adjustment

is seen in Figure B.1.

Figure B.1: Seasonal Adjustment of Total Passengers
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Figure B.2: Wildfires in Colorado
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